Chapter 1: Problem 53
Which unit of physical quantity remains same for all unit system? (a) meter (b) second (c) ampere (d) kilogram
Chapter 1: Problem 53
Which unit of physical quantity remains same for all unit system? (a) meter (b) second (c) ampere (d) kilogram
All the tools & learning materials you need for study success - in one app.
Get started for free\( 1 \mathrm{Mev}=\ldots \ldots \ldots \ldots \ldots\) (a) \(10^{7}\) (b) \(10^{4}\) (c) \(10^{5}\) (d) \(10^{6}\)
Kinetic energy \(\mathrm{K}\) and linear momentum \(\mathrm{P}\) are related as \(\mathrm{K}=\left(\mathrm{P}^{2} / 2 \mathrm{~m}\right) .\) What is the equation of the relative error \(\Delta \mathrm{k} / \mathrm{k}\) in measurement of the \(\mathrm{K} ?\) (mass in constant) (a) \((\mathrm{P} / \Delta \mathrm{P})\) (b) \(2(\Delta \mathrm{P} / \mathrm{P})\) (c) \((\mathrm{P} / 2 \Delta \mathrm{P})\) (d) \(4(\Delta \mathrm{P} / \mathrm{P})\)
From $\left[\mathrm{p}+\left(\mathrm{a} / \mathrm{v}^{2}\right)\right](\mathrm{v}-\mathrm{b})=$ constant equation is dimensionally correct find the dimensional formula for \(\mathrm{b}\) ? where \(\mathrm{P}=\) pressure \(\mathrm{V}=\) volume (a) \(\mathrm{M}^{0} \mathrm{~L}^{3} \mathrm{~T}^{0}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{0}\) (c) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{3}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\)
The length of a rod is \((10.15 \pm 0.06) \mathrm{cm}\) what is the length of two such rods? (a) \((20.30 \pm 0.06) \mathrm{cm}\) (b) \((20.30 \pm 1.6) \mathrm{cm}\) (c) \((10.30 \pm 0.12) \mathrm{cm}\) (d) \((20.30 \pm 0.12) \mathrm{cm}\)
Subtract \(0.2 \mathrm{~J}\) from \(7.36 \mathrm{~J}\) and express the result with correct number of significant figures. (a) \(7.160 \mathrm{~J}\) (b) \(7.016 \mathrm{~J}\) (c) \(7.16 \mathrm{~J}\) (d) \(7.2 \mathrm{~J}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.