If value of gravitational constant in MKS is $6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\( then value of \)\mathrm{G}$ in \(\mathrm{CGS}=\ldots \ldots \ldots \ldots . .\left[\left(\right.\right.\) dyne \(\left.\left.-\mathrm{cm}^{2}\right) /\left(\mathrm{gm}^{2}\right)\right]\) (a) \(6.67 \times 10^{-9}\) (b) \(6.67 \times 10^{-7}\) (c) \(6.67 \times 10^{-8}\) (d) \(6.67 \times 10^{-5}\)

Short Answer

Expert verified
The value of G in the CGS system is \(6.67 \times 10^{-10} \frac{\mathrm{dyne} \cdot \mathrm{cm}^2}{\mathrm{gm}^2}\). However, none of the given options match the calculated value.

Step by step solution

01

Determine the conversion factors between the systems

: In the given exercise, we have: 1. Length: MKS (meters) to CGS (centimeters): 1 meter = 100 centimeters 2. Mass: MKS (kilograms) to CGS (grams): 1 kilogram = 1000 grams 3. Force: MKS (Newtons) to CGS (dynes): 1 Newton = 100,000 dynes
02

Apply the conversion factors

: The value of G in MKS is given as \(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\). To convert this into CGS: 1. Replace meters with centimeters: \(\mathrm{Nm}^{2} \rightarrow 100 \times 100 \mathrm{cm}^{2}\) 2. Replace kilograms with grams: \(/ \mathrm{kg}^{2} \rightarrow / (1000 \times 1000 \mathrm{gm}^{2})\) 3. Replace Newtons with dynes: \(N \rightarrow 100,000 \mathrm{dyne}\) Now apply all these conversions simultaneously: \(6.67 \times 10^{-11} \times (\frac{100,000 \cdot 100 \cdot 100}{1000 \cdot 1000}) \frac{\mathrm{dyne} \cdot \mathrm{cm}^2}{\mathrm{gm}^2}\)
03

Simplify and compare with the given options

: Simplify the expression: \(6.67 \times 10^{-11} \times (\frac{10,000,000}{1,000,000}) \frac{\mathrm{dyne} \cdot \mathrm{cm}^2}{\mathrm{gm}^2} = 6.67 \times 10^{-11} \times 10 \frac{\mathrm{dyne} \cdot \mathrm{cm}^2}{\mathrm{gm}^2} = 6.67 \times 10^{-10} \frac{\mathrm{dyne} \cdot \mathrm{cm}^2}{\mathrm{gm}^2}\) Compare the calculated value with the given options: (a) \(6.67 \times 10^{-9}\) (b) \(6.67 \times 10^{-7}\) (c) \(6.67 \times 10^{-8}\) (d) \(6.67 \times 10^{-5}\) None of the given options match the calculated value: \(6.67 \times 10^{-10} \, \mathrm{dyne} \cdot \mathrm{cm}^2 / \mathrm{gm}^2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The radius of circle is \(1.26 \mathrm{~cm}\). According to the concept of significant figures area of it can be represented as - (a) \(4.9850 \mathrm{~cm}^{2}\) (b) \(4.985 \mathrm{~cm}^{2}\) (c) \(4.98 \mathrm{~cm}^{2}\) (d) \(9.98 \mathrm{~cm}^{2}\)

Dimensional formula for torque is (a) \(\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-3}\) (b) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\)

Find the dimensional formula for energy per unit surface area per unit time (a) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (b) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{1}\)

What is the least count of screw gauge? (a) \(10^{-4} \mathrm{~m}\) (b) \(10^{-5} \mathrm{~m}\) (c) \(10^{-2} \mathrm{~m}\) (d) \(10^{-6} \mathrm{~m}\)

Match list - I with list - II $$ \begin{array}{|l|l|} \hline \multicolumn{1}{|c|} {\text { List - I }} & \multicolumn{1}{|c|} {\text { List - II }} \\ \hline \text { (1) Joule } & \text { (a) henry } \times \text { ampere/sec } \\\ \hline \text { (2) Watt } & \text { (b) coulomb } \times \text { volt } \\ \hline \text { (3) volt } & \text { (c) meter } \times \text { ohm } \\ \hline \text { (4) Resistivity } & \text { (d) (ampere) }^{2} \times \text { ohm } \\ \hline \end{array} $$ (a) \(b, d, c, a\) (b) \(c, a, b, d\) (c) \(b, d, a, c\) (d) \(b, c, a, d\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free