Chapter 1: Problem 62
100 picometer \(=\ldots \ldots \ldots \ldots\) (a) \(10^{-8} \mathrm{~cm}\) (b) \(10^{-7} \mathrm{~m}\) (c) \(10 \times 10^{-6} \mu \mathrm{m}\) (d) \(10 \times 10^{-8} \mu \mathrm{m}\)
Chapter 1: Problem 62
100 picometer \(=\ldots \ldots \ldots \ldots\) (a) \(10^{-8} \mathrm{~cm}\) (b) \(10^{-7} \mathrm{~m}\) (c) \(10 \times 10^{-6} \mu \mathrm{m}\) (d) \(10 \times 10^{-8} \mu \mathrm{m}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe dimensional formula of plank's constant is ........... (a) \(\mathrm{M}^{3} \mathrm{~L}^{2} \mathrm{~T}^{-1}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3}\)
Heat produced in a current carrying conducting wire is \(\mathrm{H}=\mathrm{I}^{2} \mathrm{Rt}\) it percentage error in $\mathrm{I}, \mathrm{R}\( and \)\mathrm{t}\( is \)2 \%, 4 \%\( and \)2 \%$ respectively then total percentage error in measurement of heat energy \(\ldots \ldots \ldots\) (a) \(8 \%\) (b) \(15 \%\) (c) \(5 \%\) (d) \(10 \%\)
Match column - I with column - II $$ \begin{array}{|l|l|} \hline \multicolumn{1}{|c|} {\text { Column - I }} & \multicolumn{1}{|c|} {\text { Column - II }} \\ \hline \text { (1) capacitance } & \text { (a) } \mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~A}^{-1} \\ \hline \text { (2) Electricfield } & \text { (b) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \text { (3) planck's constant } & \text { (c) } \mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2} \\ \hline \text { (4) Angular momentum } & \text { (d) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \end{array} $$ (a) \(a, c, b, d\) (b) \(c, a, d, b\) (c) \(c, a, b, d\) (d) \(a, b, d, c\)
unit of universal gravitational constant is ............ (a) \(\mathrm{kg} \mathrm{m} \mathrm{sec}^{-1}\) (b) \(\mathrm{N} \mathrm{m}^{-1} \mathrm{sec}\) (c) \(\mathrm{N} \mathrm{m}^{2} \mathrm{~kg}^{-2}\) (d) \(\mathrm{N} \mathrm{m} \mathrm{kg}^{-1}\)
Kinetic energy \(\mathrm{K}\) and linear momentum \(\mathrm{P}\) are related as \(\mathrm{K}=\left(\mathrm{P}^{2} / 2 \mathrm{~m}\right) .\) What is the equation of the relative error \(\Delta \mathrm{k} / \mathrm{k}\) in measurement of the \(\mathrm{K} ?\) (mass in constant) (a) \((\mathrm{P} / \Delta \mathrm{P})\) (b) \(2(\Delta \mathrm{P} / \mathrm{P})\) (c) \((\mathrm{P} / 2 \Delta \mathrm{P})\) (d) \(4(\Delta \mathrm{P} / \mathrm{P})\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.