Chapter 1: Problem 62
100 picometer \(=\ldots \ldots \ldots \ldots\) (a) \(10^{-8} \mathrm{~cm}\) (b) \(10^{-7} \mathrm{~m}\) (c) \(10 \times 10^{-6} \mu \mathrm{m}\) (d) \(10 \times 10^{-8} \mu \mathrm{m}\)
Chapter 1: Problem 62
100 picometer \(=\ldots \ldots \ldots \ldots\) (a) \(10^{-8} \mathrm{~cm}\) (b) \(10^{-7} \mathrm{~m}\) (c) \(10 \times 10^{-6} \mu \mathrm{m}\) (d) \(10 \times 10^{-8} \mu \mathrm{m}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(L\) and \(R\) are represented as the inductance and resistance respectively then the dimensional formula of \(R /\) will be \(\ldots \ldots\) (a) \(\mathrm{M}^{-2} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~A}^{1}\) (b) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1} \mathrm{~A}^{0}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{0} \mathrm{~A}^{1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{1} \mathrm{~A}^{0}\)
Dimensional formula for conductance is ........... (a) \(\mathrm{M}^{-1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{2}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{-2} \mathrm{~T}^{3} \mathrm{~A}^{2}\) (d) \(\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{3} \mathrm{~A}^{2}\)
The radius of circle is \(1.26 \mathrm{~cm}\). According to the concept of significant figures area of it can be represented as - (a) \(4.9850 \mathrm{~cm}^{2}\) (b) \(4.985 \mathrm{~cm}^{2}\) (c) \(4.98 \mathrm{~cm}^{2}\) (d) \(9.98 \mathrm{~cm}^{2}\)
Which physical quantity has unit of pascal - second? (a) Velocity (b) viscosity (c) energy (d) coefficient of viscosity
Dimensional formula for calories is .............. (a) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\) (b) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\) (d) \(\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.