Chapter 1: Problem 63
100 watt hour \(=\ldots \ldots \ldots \ldots \ldots\) joule. (a) \(3.6 \times 10^{5} \mathrm{~J}\) (b) \(3.6 \times 10^{6} \mathrm{~J}\) (c) \(36 \times 10^{5} \mathrm{~J}\) (d) \(36 \times 10^{6} \mathrm{~J}\)
Chapter 1: Problem 63
100 watt hour \(=\ldots \ldots \ldots \ldots \ldots\) joule. (a) \(3.6 \times 10^{5} \mathrm{~J}\) (b) \(3.6 \times 10^{6} \mathrm{~J}\) (c) \(36 \times 10^{5} \mathrm{~J}\) (d) \(36 \times 10^{6} \mathrm{~J}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{x}\) meter is a unit of length then area of $1 \mathrm{~m}^{2}=\ldots \ldots \ldots \ldots$ (a) \(x\) (b) \(\mathrm{x}^{2}\) (c) \(x^{-2}\) (d) \(x^{-1}\)
Addition of measurement \(15.225 \mathrm{~cm}, 7.21 \mathrm{~cm}\) and $3.0 \mathrm{~cm}\( in significant figure is \)\ldots \ldots \ldots$ (a) \(25.43 \mathrm{~cm}\) (b) \(25.4 \mathrm{~cm}\) (c) \(25.435 \mathrm{~cm}\) (d) \(25.4350 \mathrm{~cm}\)
A particle has an acceleration of \(72 \mathrm{~km} / \mathrm{min}^{2}\) find acceleration in SI system. (a) \(0.5 \mathrm{~m} / \mathrm{s}^{2}\) (b) \(30 \mathrm{~m} / \mathrm{s}^{2}\) (c) \(18 \mathrm{~m} / \mathrm{s}^{2}\) (d) \(20 \mathrm{~m} / \mathrm{s}^{2}\)
Pressure \(P=\left(a t^{2} / b x\right)\) where \(x=\) distance, \(t=\) time find the dimensional formula for \(\mathrm{a} / \mathrm{b}\) (a) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-4}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (d) \(\mathrm{M}^{+1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\)
In the experiment of simple pendulum error in length of pendulum \((\ell)\) is \(5 \%\) and that of \(g\) is \(3 \%\) then find percentage error in measurement of periodic time for pendulum (a) \(4.2 \%\) (b) \(1.2 \%\) (c) \(2 \%\) (d) \(4 \%\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.