Chapter 1: Problem 64
If \(\mathrm{x}\) meter is a unit of length then area of $1 \mathrm{~m}^{2}=\ldots \ldots \ldots \ldots$ (a) \(x\) (b) \(\mathrm{x}^{2}\) (c) \(x^{-2}\) (d) \(x^{-1}\)
Chapter 1: Problem 64
If \(\mathrm{x}\) meter is a unit of length then area of $1 \mathrm{~m}^{2}=\ldots \ldots \ldots \ldots$ (a) \(x\) (b) \(\mathrm{x}^{2}\) (c) \(x^{-2}\) (d) \(x^{-1}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDimensional formula of latent heat is ........ (a) \(\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}\) (b) \(\mathrm{M}^{2} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\) (d) \(\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-1}\)
\( 1 \mathrm{rad}=\ldots \ldots \ldots \ldots\) (a) \(180^{\circ}\) (b) \(3.14^{\circ}\) (c) \((180 / \pi)^{\circ}\) (d) \((\pi / 180)^{\circ}\)
Dimensional formula for torque is (a) \(\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-3}\) (b) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\)
If value of gravitational constant in MKS is $6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\( then value of \)\mathrm{G}$ in \(\mathrm{CGS}=\ldots \ldots \ldots \ldots . .\left[\left(\right.\right.\) dyne \(\left.\left.-\mathrm{cm}^{2}\right) /\left(\mathrm{gm}^{2}\right)\right]\) (a) \(6.67 \times 10^{-9}\) (b) \(6.67 \times 10^{-7}\) (c) \(6.67 \times 10^{-8}\) (d) \(6.67 \times 10^{-5}\)
If $\mathrm{P}=\left[\left(\mathrm{A}^{2} \mathrm{~B}\right) /\left(\mathrm{C}^{3}\right)\right]\( where percentage error in \)\mathrm{A}, \mathrm{B}\( and \)\mathrm{C}$ are respectively \(\pm 2 \% \pm 3 \%\) and \(\pm 5 \%\) then total percentage error in measurement of \(\mathrm{p}\) (a) \(18 \%\) (b) \(14 \%\) (c) \(21 \%\) (d) \(12 \%\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.