Chapter 1: Problem 66
Wave length of light radiation $0.000015 \mathrm{~m}=\ldots \ldots \ldots \ldots .$ (a) 15 micron (b) \(1.5\) micron (c) 150 micron (d) \(0.15\) micron
Chapter 1: Problem 66
Wave length of light radiation $0.000015 \mathrm{~m}=\ldots \ldots \ldots \ldots .$ (a) 15 micron (b) \(1.5\) micron (c) 150 micron (d) \(0.15\) micron
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the dimensional formula for energy per unit surface area per unit time (a) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (b) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{1}\)
Dimensional formula of \(\mathrm{CV}\) ? where C - capacitance and \(\mathrm{V}\) - potential difference (a) \(\mathrm{M}^{1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{1}\) (c) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1} \mathrm{~A}^{-1}\) (d) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1} \mathrm{~A}^{1}\)
If \(\mathrm{x}\) meter is a unit of length then area of $1 \mathrm{~m}^{2}=\ldots \ldots \ldots \ldots$ (a) \(x\) (b) \(\mathrm{x}^{2}\) (c) \(x^{-2}\) (d) \(x^{-1}\)
\( 1\) parsec \(=\ldots \ldots \ldots \ldots \ldots\) (a) \(10^{-15} \mathrm{~m}\) (b) \(1.496 \times 10^{11} \mathrm{~m}\) (c) \(1.496 \times 10^{15} \mathrm{~m}\) (d) \(3.08 \times 10^{16} \mathrm{~m}\)
Which physical quantity has dimensional formula as \(\mathrm{CR}\) where \(\mathrm{C}\) - capacitance and \(\mathrm{R}\) - Resistance? (a) Frequency (b) current (c) Time period (d) acceleration
What do you think about this solution?
We value your feedback to improve our textbook solutions.