Chapter 1: Problem 78
The SI unit of momentum is ............ (a) \(\mathrm{kg} \times\) newton (b) \(\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{2}\) (c) \(\mathrm{kg} \mathrm{m}^{-1}\) (d) \(\mathrm{kg} \mathrm{ms}^{-1}\)
Chapter 1: Problem 78
The SI unit of momentum is ............ (a) \(\mathrm{kg} \times\) newton (b) \(\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{2}\) (c) \(\mathrm{kg} \mathrm{m}^{-1}\) (d) \(\mathrm{kg} \mathrm{ms}^{-1}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEquation of \(\ell_{1}=\ell_{0}\left[1+\alpha\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)\right]\) find out the dimensions of the coefficient of linear expansion \(\alpha\) suffix. (a) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1} \mathrm{~K}^{1}\) (b) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{1} \mathrm{~K}^{1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{0} \mathrm{~K}^{1}\) (d) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0} \mathrm{~K}^{-1}\)
The resistance \(\mathrm{R}=\mathrm{V} / \mathrm{I}\) where $\mathrm{V}=100 \pm 5\( volts and \)\mathrm{I}=10 \pm 0.3$ amperes calculate the percentage error in \(\mathrm{R}\) (a) \(8 \%\) (b) \(10 \%\) (c) \(12 \%\) (d) \(14 \%\)
Kinetic energy \(\mathrm{K}\) and linear momentum \(\mathrm{P}\) are related as \(\mathrm{K}=\left(\mathrm{P}^{2} / 2 \mathrm{~m}\right) .\) What is the equation of the relative error \(\Delta \mathrm{k} / \mathrm{k}\) in measurement of the \(\mathrm{K} ?\) (mass in constant) (a) \((\mathrm{P} / \Delta \mathrm{P})\) (b) \(2(\Delta \mathrm{P} / \mathrm{P})\) (c) \((\mathrm{P} / 2 \Delta \mathrm{P})\) (d) \(4(\Delta \mathrm{P} / \mathrm{P})\)
Which of the following numerical value have significant figure \(4 ?\) (a) \(1.011\) (b) \(0.010\) (c) \(0.001\) (d) \(0.100\)
Dimensional formula of latent heat is ........ (a) \(\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}\) (b) \(\mathrm{M}^{2} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\) (d) \(\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-1}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.