If \(\mathrm{A}=\mathrm{b}^{4}\) the fractional error in \(\mathrm{A}\) is $\ldots \ldots \ldots \ldots$ (a) \(\left[(\Delta \mathrm{b})^{4} /(\mathrm{b})\right]\) (b) \([\Delta \mathrm{b} / \mathrm{b}]\) (c) \(4[(\Delta \mathrm{b}) /(\mathrm{b})]\) (d) \((\Delta \mathrm{b})^{4}\)

Short Answer

Expert verified
The short answer is: (c) \(4\left[\frac{\Delta\mathrm{b}}{\mathrm{b}}\right]\)

Step by step solution

01

Calculate the absolute error in A

First, we need to find the absolute error in A by differentiating A with respect to b. When we differentiate A with respect to b, we will obtain the factor by which the absolute error in b affects the absolute error in A. \( \frac{\mathrm{dA}}{\mathrm{db}} = \frac{\mathrm{d(b)^4}}{\mathrm{db}}\) Using the power rule: \( \frac{\mathrm{dA}}{\mathrm{db}} = 4b^3\)
02

Calculate the relative error in A

Now, we need to find the relative error in A by dividing the absolute error in A by A itself: \( \frac{\Delta\mathrm{A}}{\mathrm{A}} = \frac{4b^3 \Delta\mathrm{b}}{b^4} \)
03

Simplify the expression

Now, we can simplify the expression by cancelling out b^3 from the numerator and denominator: \( \frac{\Delta\mathrm{A}}{\mathrm{A}} = \frac{4\Delta\mathrm{b}}{b} \)
04

Select the correct option

Comparing our simplified expression for the fractional error in A with the given options, we can see that the correct answer is: (c) \(4\left[\frac{\Delta\mathrm{b}}{\mathrm{b}}\right]\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Kinetic energy \(\mathrm{K}\) and linear momentum \(\mathrm{P}\) are related as \(\mathrm{K}=\left(\mathrm{P}^{2} / 2 \mathrm{~m}\right) .\) What is the equation of the relative error \(\Delta \mathrm{k} / \mathrm{k}\) in measurement of the \(\mathrm{K} ?\) (mass in constant) (a) \((\mathrm{P} / \Delta \mathrm{P})\) (b) \(2(\Delta \mathrm{P} / \mathrm{P})\) (c) \((\mathrm{P} / 2 \Delta \mathrm{P})\) (d) \(4(\Delta \mathrm{P} / \mathrm{P})\)

unit of universal gravitational constant is ............ (a) \(\mathrm{kg} \mathrm{m} \mathrm{sec}^{-1}\) (b) \(\mathrm{N} \mathrm{m}^{-1} \mathrm{sec}\) (c) \(\mathrm{N} \mathrm{m}^{2} \mathrm{~kg}^{-2}\) (d) \(\mathrm{N} \mathrm{m} \mathrm{kg}^{-1}\)

Heat produced in a current carrying conducting wire is \(\mathrm{H}=\mathrm{I}^{2} \mathrm{Rt}\) it percentage error in $\mathrm{I}, \mathrm{R}\( and \)\mathrm{t}\( is \)2 \%, 4 \%\( and \)2 \%$ respectively then total percentage error in measurement of heat energy \(\ldots \ldots \ldots\) (a) \(8 \%\) (b) \(15 \%\) (c) \(5 \%\) (d) \(10 \%\)

For a sphere having volume is given by \(\mathrm{V}=(4 / 3) \pi \mathrm{r}^{3}\) What is the equation of the relative error \((\Delta \mathrm{V} / \mathrm{V})\) in measurement of the volume \(\mathrm{V}\) ? (a) \(3(\Delta \mathrm{r} / \mathrm{r})\) (b) \(4(\Delta \mathrm{r} / \mathrm{r})\) (c) \((4 / 3)(\Delta \mathrm{r} / \mathrm{r})\) (d) \((1 / 3)(\Delta \mathrm{r} / \mathrm{r})\)

Dimensional formula of latent heat is ........ (a) \(\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}\) (b) \(\mathrm{M}^{2} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\) (d) \(\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-1}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free