Chapter 10: Problem 1346
The amplitude for a S.H.M. given by the equation $\mathrm{x}=3 \sin 3 \mathrm{pt}+4 \cos 3 \mathrm{pt}\( is \)\ldots \ldots \ldots \ldots \mathrm{m}$ (A) 5 (B) 7 (C) 4 (D) \(3 .\)
Chapter 10: Problem 1346
The amplitude for a S.H.M. given by the equation $\mathrm{x}=3 \sin 3 \mathrm{pt}+4 \cos 3 \mathrm{pt}\( is \)\ldots \ldots \ldots \ldots \mathrm{m}$ (A) 5 (B) 7 (C) 4 (D) \(3 .\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the maximum frequency of a sound wave at room temperature is $20,000 \mathrm{~Hz}\( then its minimum wavelength will be approximately \)\ldots \ldots\left(\mathrm{v}=340 \mathrm{~ms}^{-1}\right)$ (A) \(0.2 \AA\) (B) \(5 \AA\) (C) \(5 \mathrm{~cm}\) to \(2 \mathrm{~m}\) (D) \(20 \mathrm{~mm}\)
A string of linear density \(0.2 \mathrm{~kg} / \mathrm{m}\) is stretched with a force of \(500 \mathrm{~N}\). A transverse wave of length \(4.0 \mathrm{~m}\) and amplitude \(1 / 1\) meter is travelling along the string. The speed of the wave is \(\ldots \ldots \ldots \ldots \mathrm{m} / \mathrm{s}\) (A) 50 (B) \(62.5\) (C) 2500 (D) \(12.5\)
A tuning fork of frequency \(480 \mathrm{~Hz}\) produces 10 beats/s when sounded with a vibrating sonometer string. What must have been the frequency of the string if a slight increase in tension produces fewer beats per second than before? (A) \(480 \mathrm{~Hz}\) (B) \(490 \mathrm{~Hz}\) (C) \(460 \mathrm{~Hz}\) (D) \(470 \mathrm{~Hz}\)
A wave \(\mathrm{y}=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})\) on a string meets with another wave producing a node at \(\mathrm{x}=0 .\) Then the equation of the unknown wave is \(\ldots \ldots \ldots\) (A) \(y=a \sin (\omega t+k x)\) (B) \(\mathrm{y}=-\mathrm{a} \sin (\omega \mathrm{t}+\mathrm{kx})\) (C) \(\mathrm{y}=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})\) (D) \(\mathrm{y}=-\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})\)
When the displacement of a S.H.O. is equal to \(\mathrm{A} / 2\), what fraction of total energy will be equal to kinetic energy ? \\{A is amplitude \(\\}\) (A) \(2 / 7\) (B) \(3 / 4\) (C) \(2 / 9\) (D) \(5 / 7\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.