Chapter 11: Problem 1521
The protonic charge in \(100 \mathrm{gm}\) of water is $\ldots \ldots . . \mathrm{c}$ (A) \(4.8 \times 10^{5}\) (B) \(5.4 \times 10^{6}\) (C) \(3.6 \times 10^{4}\) (D) \(4.9 \times 10^{6}\)
Chapter 11: Problem 1521
The protonic charge in \(100 \mathrm{gm}\) of water is $\ldots \ldots . . \mathrm{c}$ (A) \(4.8 \times 10^{5}\) (B) \(5.4 \times 10^{6}\) (C) \(3.6 \times 10^{4}\) (D) \(4.9 \times 10^{6}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeTwo identical metal plates are given positive charges \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{2}\left(<\mathrm{Q}_{1}\right)\) respectively. If they are now brought close to gather to form a parallel plate capacitor with capacitance \(\mathrm{c}\), the potential difference between them is (A) \(\left[\left(Q_{1}+Q_{2}\right) /(2 c)\right]\) (B) \(\left[\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right) / \mathrm{c}\right]\) (C) \(\left[\left(\mathrm{Q}_{1}-\mathrm{Q}_{2}\right) /(2 \mathrm{c})\right]\) (D) \(\left[\left(\mathrm{Q}_{1}-\mathrm{Q}_{2}\right) / \mathrm{c}\right]\)
The electric flux for gaussian surface \(\mathrm{A}\) that enclose the $\ldots \ldots\( charged particles in free space is (given \)\left.q_{1}=-14 n c, q_{2}=78.85 \mathrm{nc}, q_{3}=-56 n c\right)$ (A) \(10^{4} \mathrm{Nm}^{2} / \mathrm{C}\) (B) \(10^{3} \mathrm{Nm}^{2} / \mathrm{C}\) (C) \(6.2 \times 10^{3} \mathrm{Nm}^{2} / \mathrm{C}\) (D) \(6.3 \times 10^{4} \mathrm{Nm}^{2} / \mathrm{C}\)
Two point charges of \(+16 \mathrm{c}\) and \(-9 \mathrm{c}\) are placed $8 \mathrm{~cm}\( apart in air \)\ldots \ldots\(.. distance of a point from \)-9$ c charge at which the resultant electric field is zero. (A) \(24 \mathrm{~cm}\) (B) \(9 \mathrm{~cm}\) (C) \(16 \mathrm{~cm}\) (D) \(35 \mathrm{~cm}\)
Capacitance of a parallel plate capacitor becomes \((4 / 3)\) times its original value if a dielectric slab of thickness \(t=d / 2\) is inserted between the plates (d is the separation between the plates). The dielectric constant of the slab is (A) 8 (B) 4 (C) 6 (D) 2
Charges \(+q\) and \(-q\) are placed at point \(A\) and \(B\) respectively which are a distance \(2 \mathrm{~L}\) apart, \(\mathrm{C}\) is the midpoint between \(\mathrm{A}\) and \(\mathrm{B}\). The work done in moving a charge \(+Q\) along the semicircle \(C R D\) is \(\ldots \ldots\) (A) $\left[(\mathrm{qQ}) /\left(2 \pi \mathrm{\epsilon}_{0} \mathrm{~L}\right)\right]$ (B) \(\left[(-q Q) /\left(6 \pi \in_{0} L\right)\right]\) (C) $\left[(\mathrm{qQ}) /\left(6 \pi \mathrm{e}_{0} \mathrm{~L}\right)\right]$ (D) \(\left[(q Q) /\left(4 \pi \in_{0} L\right)\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.