Chapter 11: Problem 1533
For the system shown in figure, if the resultant force on q is zero, then \(q=\ldots \ldots \ldots\) (A) \(-2 \sqrt{2} \mathrm{Q}\) (B) \(2 \sqrt{2} \mathrm{Q}\) (C) \(2 \sqrt{3} \mathrm{Q}\) (D) \(-3 \sqrt{2} Q\)
Chapter 11: Problem 1533
For the system shown in figure, if the resultant force on q is zero, then \(q=\ldots \ldots \ldots\) (A) \(-2 \sqrt{2} \mathrm{Q}\) (B) \(2 \sqrt{2} \mathrm{Q}\) (C) \(2 \sqrt{3} \mathrm{Q}\) (D) \(-3 \sqrt{2} Q\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe displacement of a charge \(Q\) in the electric field $E^{-}=e_{1} i \wedge+e_{2} j \wedge+e_{3} k \wedge\( is \)r^{-}=a i \wedge+b j \wedge$ The work done is \(\ldots \ldots\) (A) \(Q\left(e_{1}+e_{2}\right) \sqrt{\left(a^{2}+b^{2}\right)}\) (B) \(Q\left[\sqrt{ \left.\left(e_{1}^{2}+e_{2}^{2}\right)\right](a+b)}\right.\) (C) \(Q\left(a e_{1}+b e_{2}\right)\) (D) \(\left.Q \sqrt{[}\left(a e_{1}\right)^{2}+\left(b e_{2}\right)^{2}\right]\)
The capacitors of capacitance \(4 \mu \mathrm{F}, 6 \mu \mathrm{F}\) and $12 \mu \mathrm{F}$ are connected first in series and then in parallel. What is the ratio of equivalent capacitance in the two cases? (A) \(2: 3\) (B) \(11: 1\) (C) \(1: 11\) (D) \(1: 3\)
An electric dipole is placed along the \(\mathrm{x}\) -axis at the origin o. \(\mathrm{A}\) point \(P\) is at a distance of \(20 \mathrm{~cm}\) from this origin such that OP makes an angle \((\pi / 3)\) with the x-axis. If the electric field at P makes an angle \(\theta\) with the x-axis, the value of \(\theta\) would be \(\ldots \ldots \ldots\) (A) \((\pi / 3)+\tan ^{-1}(\sqrt{3} / 2)\) (B) \((\pi / 3)\) (C) \((2 \pi / 3)\) (D) \(\tan ^{-1}(\sqrt{3} / 2)\)
The potential at a point \(\mathrm{x}\) (measured in \(\mu \mathrm{m}\) ) due to some charges situated on the \(\mathrm{x}\) -axis is given by \(\mathrm{V}(\mathrm{x})=\left[(20) /\left(\mathrm{x}^{2}-4\right)\right]\) Volt. The electric field at \(\mathrm{x}=4 \mu \mathrm{m}\) is given by (A) \((5 / 3) \mathrm{V} \mu \mathrm{m}^{-1}\) and in positive \(\mathrm{x}\) - direction (B) \((10 / 9) \mathrm{V} \mu \mathrm{m}^{-1}\) and in positive \(\mathrm{x}\) - direction (C) \((10 / 9) \mathrm{V} \mu \mathrm{m}^{-1}\) and in positive \(\mathrm{x}\) - direction (D) \((5 / 3) \mathrm{V} \mu \mathrm{m}^{-1}\) and in positive \(\mathrm{x}\) - direction
The electric Potential at a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})\( is given by \)\mathrm{V}=-\mathrm{x}^{2} \mathrm{y}-\mathrm{x} \mathrm{z}^{3}+4\(. The electric field \)\mathrm{E}^{\boldsymbol{T}}$ at that point is \(\ldots \ldots\) (A) $i \wedge\left(2 \mathrm{xy}+\mathrm{z}^{3}\right)+\mathrm{j} \wedge \mathrm{x}^{2}+\mathrm{k} \wedge 3 \mathrm{xz}^{2}$ (B) $i \wedge 2 \mathrm{xy}+\mathrm{j} \wedge\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)+\mathrm{k} \wedge\left(3 \mathrm{xy}-\mathrm{y}^{2}\right)$ (C) \(i \wedge z^{3}+j \wedge x y z+k \wedge z^{2}\) (D) \(i \wedge\left(2 x y-z^{3}\right)+j \wedge x y^{2}+k \wedge 3 z^{2} x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.