Chapter 11: Problem 1533
For the system shown in figure, if the resultant force on q is zero, then \(q=\ldots \ldots \ldots\) (A) \(-2 \sqrt{2} \mathrm{Q}\) (B) \(2 \sqrt{2} \mathrm{Q}\) (C) \(2 \sqrt{3} \mathrm{Q}\) (D) \(-3 \sqrt{2} Q\)
Chapter 11: Problem 1533
For the system shown in figure, if the resultant force on q is zero, then \(q=\ldots \ldots \ldots\) (A) \(-2 \sqrt{2} \mathrm{Q}\) (B) \(2 \sqrt{2} \mathrm{Q}\) (C) \(2 \sqrt{3} \mathrm{Q}\) (D) \(-3 \sqrt{2} Q\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf 3 charges are placed at the vertices of equilateral triangle of charge ' \(q\) ' each. What is the net potential energy, if the side of equilateral triangle is \(\ell \mathrm{cm}\). (A) $\left[1 /\left(4 \pi \epsilon_{0}\right)\right]\left(3 q^{2} / \ell\right)$ (B) $\left[1 /\left(4 \pi \epsilon_{0}\right)\right]\left(2 q^{2} / \ell\right)$ (C) \(\left[1 /\left(4 \pi \epsilon_{0}\right)\right]\left(q^{2} / \ell\right)\) (D) $\left[1 /\left(4 \pi \epsilon_{0}\right)\right]\left(4 q^{2} / \ell\right)$
Two thin wire rings each having a radius \(R\) are placed at a distance \(d\) apart with their axes coinciding. The charges on the two rings are \(+q\) and \(-q\). The potential difference between the centers of the two rings is $\ldots .$ (A) 0 (B) $\left.\left[\mathrm{q} /\left(2 \pi \epsilon_{0}\right)\right]\left[(1 / \mathrm{R})-\left\\{1 / \sqrt{(}^{2}+\mathrm{d}^{2}\right)\right\\}\right]$ (C) $\left[\mathrm{q} /\left(4 \pi \epsilon_{0}\right)\right]\left[(1 / \mathrm{R})-\left\\{1 / \sqrt{\left. \left.\left(\mathrm{R}^{2}+\mathrm{d}^{2}\right)\right\\}\right]}\right.\right.$ (D) \(\left[(q R) /\left(4 \pi \epsilon_{0} d^{2}\right)\right]\)
Two positive point charges of \(12 \mu \mathrm{c}\) and \(8 \mu \mathrm{c}\) are placed \(10 \mathrm{~cm}\) apart in air. The work done to bring them $4 \mathrm{~cm}$ closer is (A) Zero (B) \(4.8 \mathrm{~J}\) (C) \(3.5 \mathrm{~J}\) (D) \(-5.8 \mathrm{~J}\)
Three particles, each having a charge of \(10 \mu \mathrm{c}\) are placed at the corners of an equilateral triangle of side \(10 \mathrm{~cm}\). The electrostatic potential energy of the system is (Given $\left.\left[1 /\left(4 \pi \epsilon_{0}\right)\right]=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{c}^{2}\right)$ (A) \(100 \mathrm{~J}\) (B) \(27 \mathrm{~J}\) (C) Zero (D) Infinite
The potential at a point \(\mathrm{x}\) (measured in \(\mu \mathrm{m}\) ) due to some charges situated on the \(\mathrm{x}\) -axis is given by \(\mathrm{V}(\mathrm{x})=\left[(20) /\left(\mathrm{x}^{2}-4\right)\right]\) Volt. The electric field at \(\mathrm{x}=4 \mu \mathrm{m}\) is given by (A) \((5 / 3) \mathrm{V} \mu \mathrm{m}^{-1}\) and in positive \(\mathrm{x}\) - direction (B) \((10 / 9) \mathrm{V} \mu \mathrm{m}^{-1}\) and in positive \(\mathrm{x}\) - direction (C) \((10 / 9) \mathrm{V} \mu \mathrm{m}^{-1}\) and in positive \(\mathrm{x}\) - direction (D) \((5 / 3) \mathrm{V} \mu \mathrm{m}^{-1}\) and in positive \(\mathrm{x}\) - direction
What do you think about this solution?
We value your feedback to improve our textbook solutions.