Two spherical conductors of radii \(\mathrm{r}_{1}\) and \(\mathrm{r}_{2}\) are at
potentials \(\mathrm{v}_{1}\) and \(\mathrm{v}_{2}\) respectively, then what will
be the common potential when the conductors are brought in constant?
(A) $\left[\left(\mathrm{r}_{1} \mathrm{v}_{1}+\mathrm{r}_{2}
\mathrm{v}_{2}\right) /\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)\right]$
(B) $\left[\left(\mathrm{r}_{1} \mathrm{v}_{1}+\mathrm{r}_{2}
\mathrm{v}_{2}\right) /\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)\right]$
(C) $\left[\left(\mathrm{r}_{1} \mathrm{v}_{1}-\mathrm{r}_{2}
\mathrm{v}_{2}\right) /\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)\right]$
(D) None of these