Chapter 13: Problem 1943
A magnetic field \(B^{-}=\) Bo \(j \wedge\) exists in the region \(a
Chapter 13: Problem 1943
A magnetic field \(B^{-}=\) Bo \(j \wedge\) exists in the region \(a
All the tools & learning materials you need for study success - in one app.
Get started for freeThe magnetism of magnet is due to (a) The spin motion of electron (b) Earth (c) Pressure inside the earth core region (d) Cosmic rays
A Galvanometer has a resistance \(\mathrm{G}\) and \(\mathrm{Q}\) current \(\mathrm{I}_{\mathrm{G}}\) flowing in it produces full scale deflection. \(\mathrm{S}_{1}\) is the value of the shunt which converts it into an ammeter of range 0 to \(\mathrm{I}\) and \(\mathrm{S}_{2}\) is the value of the shunt for the range 0 to \(2 \mathrm{I}\). The ratio $\left(\mathrm{S}_{1} / \mathrm{S}_{2}\right) \mathrm{is}$ (a) $\left[\left(2 \mathrm{I}-\mathrm{I}_{\mathrm{G}}\right) /\left(\mathrm{I}-\mathrm{I}_{\mathrm{G}}\right)\right]$ (b) $(1 / 2)\left[\left(\mathrm{I}-\mathrm{I}_{\mathrm{G}}\right) /\left(2 \mathrm{I}-\mathrm{I}_{\mathrm{G}}\right)\right]$ (c) 2 (d) 1
A magnet of magnetic moment \(50 \uparrow \mathrm{A} \mathrm{m}^{2}\) is placed along the \(\mathrm{X}\) -axis in a mag. field $\mathrm{B}^{-}=(0.5 \uparrow+3.0 \mathrm{~J} \wedge$ ) Tesla. The torque acting on the magnet is N.m. (c) \(75 \mathrm{k} \wedge\) (d) \(25 \sqrt{5} \mathrm{k} \wedge\) (a) \(175 \mathrm{k}\) (b) \(150 \mathrm{k}\)
Two particles \(\mathrm{X}\) and \(\mathrm{Y}\) having equal charges, after being accelerated through the same potential difference, enter a region of uniform mag. field and describe circular path of radius \(\mathrm{r}_{1}\) and \(\mathrm{r}_{2}\) respectively. The ratio of mass of \(\mathrm{X}\) to that of \(\mathrm{Y}\) is (a) \(\sqrt{\left(r_{1} / \mathrm{r}_{2}\right)}\) (b) \(\left(\mathrm{r}_{2} / \mathrm{r}_{1}\right)\) (c) \(\left(\mathrm{r}_{1} / \mathrm{r}_{2}\right)^{2}\) (b) \(\left(\mathrm{r}_{1} / \mathrm{r}_{2}\right)\)
Magnetic intensity for an axial point due to a short bar magnet of magnetic moment \(\mathrm{M}\) is given by (a) \(\left(\mu_{0} / 4 \pi\right)\left(\mathrm{M} / \mathrm{d}^{3}\right)\) (b) \(\left(\mu_{0} / 4 \pi\right)\left(\mathrm{M} / \mathrm{d}^{2}\right)\) (c) \(\left(\mu_{0} / 2 \pi\right)\left(\mathrm{M} / \mathrm{d}^{3}\right)\) (d) \(\left(\mu_{0} / 2 \pi\right)\left(\mathrm{M} / \mathrm{d}^{2}\right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.