Chapter 13: Problem 1955
Unit of magnetic Flux density is (a) Tesla (b) [(Weber) \(/\) (meter) \(\left.^{2}\right]\) (c) [(Newton) \(/\) (Amp - meter)] (d) All of the above
Chapter 13: Problem 1955
Unit of magnetic Flux density is (a) Tesla (b) [(Weber) \(/\) (meter) \(\left.^{2}\right]\) (c) [(Newton) \(/\) (Amp - meter)] (d) All of the above
All the tools & learning materials you need for study success - in one app.
Get started for freeTwo iclentical short bar magnets, each having magnetic moment \(\mathrm{M}\) are placed a distance of \(2 \mathrm{~d}\) apart with axes perpendicular to each other in a horizontal plane. The magnetic induction at a point midway between them is. (a) $\sqrt{2}\left(\mu_{0} / 4 \pi\right)\left(\mathrm{M} / \mathrm{d}^{3}\right)$ (b) $\sqrt{3}\left(\mu_{0} / 4 \pi\right)\left(\mathrm{M} / \mathrm{d}^{3}\right)$ (c) $\sqrt{4}\left(\mu_{0} / 4 \pi\right)\left(\mathrm{M} / \mathrm{d}^{3}\right)$ (d) $\sqrt{5}\left(\mu_{0} / 4 \pi\right)\left(\mathrm{M} / \mathrm{d}^{3}\right)$
A 2 Mev proton is moving perpendicular to a uniform magnetic field of \(2.5\) tesla. The force on the proton is (a) \(3 \times 10^{-10} \mathrm{~N}\) (b) \(70.8 \times 10^{-11} \mathrm{~N}\) (c) \(3 \times 10^{-11} \mathrm{~N}\) (d) \(7.68 \times 10^{-12} \mathrm{~N}\)
Magnetic intensity for an axial point due to a short bar magnet of magnetic moment \(\mathrm{M}\) is given by (a) \(\left(\mu_{0} / 4 \pi\right)\left(\mathrm{M} / \mathrm{d}^{3}\right)\) (b) \(\left(\mu_{0} / 4 \pi\right)\left(\mathrm{M} / \mathrm{d}^{2}\right)\) (c) \(\left(\mu_{0} / 2 \pi\right)\left(\mathrm{M} / \mathrm{d}^{3}\right)\) (d) \(\left(\mu_{0} / 2 \pi\right)\left(\mathrm{M} / \mathrm{d}^{2}\right)\)
A conducting rod of length \(\ell\) [cross-section is shown] and mass \(\mathrm{m}\) is moving down on a smooth inclined plane of inclination \(\theta\) with constant speed v. A vertically upward mag. field \(\mathrm{B}^{-}\) exists in upward direction. The magnitude of mag. field \(B^{-}\) is(a) $[(\mathrm{mg} \sin \theta) /(\mathrm{I} \ell)]$ (b) \([(\mathrm{mg} \cos \theta) /(\mathrm{I} \ell)]\) (c) \([(\mathrm{mg} \tan \theta) /(\mathrm{I} \ell)]\) (d) \([(\mathrm{mg}) /(\mathrm{I} \ell \sin \theta)]\)
An electron moving with a speed \(y_{0}\) along the positive \(x\) -axis at \(\mathrm{y}=0\) enters a region of uniform magnetic field \(\mathrm{B}^{-}=-\mathrm{B}_{0} \mathrm{k} \wedge\) which exists to the right of y-axis. The electron exits from the region after some time with the speed at co-ordinate y then.
What do you think about this solution?
We value your feedback to improve our textbook solutions.