Chapter 13: Problem 1959
The magnetism of magnet is due to (a) The spin motion of electron (b) Earth (c) Pressure inside the earth core region (d) Cosmic rays
Chapter 13: Problem 1959
The magnetism of magnet is due to (a) The spin motion of electron (b) Earth (c) Pressure inside the earth core region (d) Cosmic rays
All the tools & learning materials you need for study success - in one app.
Get started for freeIn each of the following questions, Match column-I and column-II and select the correct match out of the four given choices.(B) Ammeter (Q) Moderate resistance (C) Voltmeter (R) High, Low or moderate resistance (D) Avometer (S) High resistance (a) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S}$ (b) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{R}$ (c) $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S}$ (d) $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{R}$
A conducting rod of length \(\ell\) [cross-section is shown] and mass \(\mathrm{m}\) is moving down on a smooth inclined plane of inclination \(\theta\) with constant speed v. A vertically upward mag. field \(\mathrm{B}^{-}\) exists in upward direction. The magnitude of mag. field \(B^{-}\) is(a) $[(\mathrm{mg} \sin \theta) /(\mathrm{I} \ell)]$ (b) \([(\mathrm{mg} \cos \theta) /(\mathrm{I} \ell)]\) (c) \([(\mathrm{mg} \tan \theta) /(\mathrm{I} \ell)]\) (d) \([(\mathrm{mg}) /(\mathrm{I} \ell \sin \theta)]\)
An electron having mass \(9 \times 10^{-31} \mathrm{~kg}\), charge $1.6 \times 10^{-19} \mathrm{C}\( and moving with a velocity of \)10^{6} \mathrm{~m} / \mathrm{s}$ enters a region where mag. field exists. If it describes a circle of radius \(0.10 \mathrm{~m}\), the intensity of magnetic field must be Tesla (a) \(1.8 \times 10^{-4}\) (b) \(5.6 \times \overline{10^{-5}}\) (c) \(14.4 \times 10^{-5}\) (d) \(1.3 \times 10^{-6}\)
Two concentric co-planar circular Loops of radii \(\mathrm{r}_{1}\) and \(\mathrm{r}_{2}\) carry currents of respectively \(\mathrm{I}_{1}\) and \(\mathrm{I}_{2}\) in opposite directions. The magnetic induction at the centre of the Loops is half that due to \(\mathrm{I}_{1}\) alone at the centre. If \(\mathrm{r}_{2}=2 \mathrm{r}_{1}\) the value of $\left(\mathrm{I}_{2} / \mathrm{I}_{1}\right)$ is (a) 2 (b) \(1 / 2\) (c) \(1 / 4\) (d) 1
The direction of mag. field lines close to a straight conductor carrying current will be (a) Along the length of the conductor (b) Radially outward (c) Circular in a plane perpendicular to the conductor (d) Helical
What do you think about this solution?
We value your feedback to improve our textbook solutions.