A magnet of length \(0.1 \mathrm{~m}\) and pole strength $10^{-4} \mathrm{~A} \mathrm{~m} .$ is kept in a magnetic field of 30 tesla at an angle of 300 . The Torque acting on it is \(\times 10^{-4}\) Joule. (a) \(7.5\) (b) 3 (c) \(1.5\) (d) 6

Short Answer

Expert verified
The correct answer is (c) \(1.5 * 10^{-4}\) Joule.

Step by step solution

01

Calculate magnetic moment

To calculate the magnetic moment (m), we use the formula: Magnetic moment (m) = pole strength (p) * length (l) where p = \(10^{-4}\) A·m and l = 0.1 m. m = \(10^{-4}\;A·m * 0.1\;m\) m = \(10^{-5} A·m^2\)
02

Calculate the torque

Now, we need to find the torque (τ) acting on the magnet using the formula: Torque (τ) = magnetic moment (m) * magnetic field (B) * sin(θ) where m = \(10^{-5}\;A·m^2\), B = 30 T, and θ = 30°. First, we need to convert the angle to radians: θ (in radians) = (30° * π) / 180° θ = π/6 Now, we can calculate the torque: τ = \(10^{-5}\;A·m^2 * 30\;T * sin(π/6)\) τ = \(3 * 10^{-4}\;N·m * 0.5\) τ = \(1.5 * 10^{-4}\;N·m\)
03

Compare the torque with the options

We have found that the torque acting on the magnet is \(1.5 * 10^{-4}\;N·m\). Comparing this value with the given options: (a) 7.5 * \(10^{-4}\) Joule (b) 3 * \(10^{-4}\) Joule (c) 1.5 * \(10^{-4}\) Joule (d) 6 * \(10^{-4}\) Joule So the correct answer is (c) 1.5 * \(10^{-4}\) Joule.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If a magnet of pole strength \(\mathrm{m}\) is divided into four parts such that the length and width of each part is half that of initial one, then the pole strength of each part will be (a) \((\mathrm{m} / 4)\) (b) \((\mathrm{m} / 2)\) (c) \((\mathrm{m} / 8)\) (d) \(4 \mathrm{~m}\)

In each of the following questions, Match column-I and column-II and select the correct match out of the four given choices.(B) Ammeter (Q) Moderate resistance (C) Voltmeter (R) High, Low or moderate resistance (D) Avometer (S) High resistance (a) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S}$ (b) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{R}$ (c) $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S}$ (d) $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{R}$

When 2 Amp current is passed through a tangent galvanometer. It gives a deflection of \(30^{\circ} .\) For \(60^{\circ}\) deflection, the current must be (a) \(1 \mathrm{Amp}\) (b) \(2 \sqrt{3 a m p}\) (c) \(4 \mathrm{amp}\) (d) \(6 \mathrm{Amp}\)

A magnet of magnetic moment \(\mathrm{M}\) and pole strength \(\mathrm{m}\) is divided in two equal parts, then magnetic moment of each part will be (a) \(\mathrm{M}\) (b) \((\mathrm{M} / 2)\) (c) \((\mathrm{M} / 4)\) (d) \(2 \mathrm{M}\)

The deflection in a Galvanometer falls from 50 division to 20 when \(12 \Omega\) shunt is applied. The Galvanometer resistance is (a) \(18 \Omega\) (b) \(36 \Omega\) (c) \(24 \Omega\) (d) \(30 \Omega\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free