Chapter 15: Problem 2113
The dimensional formula of \(\mu_{0} \mathrm{E}_{0}\) is (A) \(L^{2} T^{-2}\) (B) \(L^{-2} T^{2}\) (C) \(\mathrm{L}^{1} \mathrm{~T}^{-1}\) (D) \({L}^{-1} \mathrm{~T}^{1}\)
Chapter 15: Problem 2113
The dimensional formula of \(\mu_{0} \mathrm{E}_{0}\) is (A) \(L^{2} T^{-2}\) (B) \(L^{-2} T^{2}\) (C) \(\mathrm{L}^{1} \mathrm{~T}^{-1}\) (D) \({L}^{-1} \mathrm{~T}^{1}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA plane electromagnetic wave of wave intensity \(10 \mathrm{~cm}^{-2}\) strikes a small mirror of area \(20 \mathrm{~cm}^{2}\), held perpendicular to the approaching wave. The radiation force on the mirror will be (A) \(6.6 \times 10^{-11} \mathrm{~N}\) (B) \(1.33 \times 10^{-11} \mathrm{~N}\) (C) \(1.33 \times 10^{-10} \mathrm{~N}\) (D) \(6.6 \times 10^{-10} \mathrm{~N}\)
Light with an energy flux of \(18 \mathrm{w} / \mathrm{m}^{2}\) or \(\mathrm{Wm}^{-2}\) falls on a non-reflecting surface at normal to surface. If the surface has an area of \(20 \mathrm{~m}^{2}\). The average force exerted on the surface during 30 minutes is (A) \(6.48 \times 10^{5} \mathrm{~N}\) (B) \(3.60 \times 10^{2} \mathrm{~N}\) (C) \(1.2 \times 10^{-6} \mathrm{~N}\) (D) \(2.16 \times 10^{-3} \mathrm{~N}\)
If the earth were not having atmosphere, its temperature (A) would have been low (B) would have been high (C) would have remain constant (D) none of these
If the relative permeability and dielectric constant of a given medium are equal to \(\mu_{\mathrm{r}}\) and \(\mathrm{K}\) respectively, then the refractive index of the medium is equal to (A) \(\sqrt{\left(\mu_{\mathrm{T}} \mathrm{K}\right)}\) (B) \(\sqrt{\left(\mu_{1} E_{0}\right)}\)
Maxwell's modified form of Ampere's circuital law is (A) \(\oint \mathrm{B}^{-} \cdot \mathrm{dS}^{-}\) (B) \(\phi \mathrm{B}^{-} \cdot \mathrm{dS}^{-}=\mu_{\mathrm{o}} \mathrm{i}\) (C) $\oint \mathrm{B}^{-} \cdot \mathrm{d} \ell^{-}=\mu_{\mathrm{o}} \mathrm{i}+\mu_{0} \in_{0}\left(\mathrm{~d} \Phi_{\mathrm{E}} / \mathrm{dt}\right)$ (D) $\oint \mathrm{B}^{-} \cdot \mathrm{d} \mathcal{\ell}^{-}=\mu_{0} \mathrm{i}+\left(1 / \in_{0}\right)\left(\mathrm{d}_{\mathrm{q}} / \mathrm{dt}\right)$
What do you think about this solution?
We value your feedback to improve our textbook solutions.