Chapter 15: Problem 2113
The dimensional formula of \(\mu_{0} \mathrm{E}_{0}\) is (A) \(L^{2} T^{-2}\) (B) \(L^{-2} T^{2}\) (C) \(\mathrm{L}^{1} \mathrm{~T}^{-1}\) (D) \({L}^{-1} \mathrm{~T}^{1}\)
Chapter 15: Problem 2113
The dimensional formula of \(\mu_{0} \mathrm{E}_{0}\) is (A) \(L^{2} T^{-2}\) (B) \(L^{-2} T^{2}\) (C) \(\mathrm{L}^{1} \mathrm{~T}^{-1}\) (D) \({L}^{-1} \mathrm{~T}^{1}\)
All the tools & learning materials you need for study success - in one app.
Get started for free
The rms value of the electric field of the light coming from the sun is $720 \mathrm{~N} / \mathrm{c}$. The average total energy density of the electromagnetic wave is (A) \(4.58 \times 10^{-6} \mathrm{Jm}^{-3}\) (B) \(6.3 \times 10^{-9} \mathrm{Jm}^{-3}\) (C) \(81.35 \times 10^{-12} \mathrm{Jm}^{-3}\) (D) \(3.3 \times 10^{-3} \mathrm{Jm}^{-3}\)
According to Maxwell, a changing electric field produces (A) emf (B) Electric current (C) magnetic field (D) radiation pressure
The waves used in communication are generally called (A) \(\gamma\) rays (B) \(\alpha\) rays (C) microwaves (D) radiowaves
Energy density of an electromagnetic wave of intensity \(0.02 \mathrm{Wm}^{-2}\) is (A) \(6.67 \times 10^{-11} \mathrm{Jm}^{-3}\) (B) \(6 \times 10^{6} \mathrm{Jm}^{-3}\) (C) \(1.5 \times 10^{10} \mathrm{Jm}^{-3}\) (D) none of the above
An electromagnetic wave going through vacuum is described by $E=E_{0} \sin (k x-\cot )$. Which of the following is independent of the wavelength? (A) \(\omega\) (B) \((\mathrm{k} / \mathrm{c})\) (C) \(\mathrm{k}_{\mathfrak{e}}\) (D) \(\mathrm{k}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.