Chapter 15: Problem 2119
Which of the following have zero average value in a plane electromagnetic wave? (A) Electric energy (B) Magnetic energy (C) Electric field (D) None of these.
Chapter 15: Problem 2119
Which of the following have zero average value in a plane electromagnetic wave? (A) Electric energy (B) Magnetic energy (C) Electric field (D) None of these.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn a plane electromagnetic wave, the electric field oscillates sinusoidaly at a frequency of \(2.0 \times 10^{10} \mathrm{~Hz}\). if the peak value of electric field is \(60 \mathrm{Vm}^{-1}\) the average energy density (in \(\mathrm{Jm}^{-3}\) ) of the magnetic field of the wave will be (given \(\left.\mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}\right)\) (A) \(2 \pi \times 10^{-7}\) (B) \((1 / 2 \pi) \times 10^{-7}\) (C) \(4 \pi \times 10^{-7}\) (D) \((1 / 4 \pi) \times 10^{-7}\)
The SI unit of displacement current is (A) coulomb (B) henry (C) ampere (D) faraday
According to Maxwell, a changing electric field produces (A) emf (B) Electric current (C) magnetic field (D) radiation pressure
The dimensional formula of energy density is (A) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (B) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\) (C) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-3}\) (D) \(\mathrm{M}^{\mathrm{l}} \mathrm{L}^{0} \mathrm{~T}^{-3}\)
Dimensional formula of intensity of radiation is (A) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\) (B) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (C) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3}\) (D) \(\overline{\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.