Chapter 15: Problem 2148
For an electromagnetic wave, the phase difference between vectors \(\mathrm{E}^{-}\) and \(\mathrm{B}^{-}\) (far away from the source) (A) 0 (B) \([\pi / 2]\) (C) \(\pi\) (D) \([3 \pi / 2]\)
Chapter 15: Problem 2148
For an electromagnetic wave, the phase difference between vectors \(\mathrm{E}^{-}\) and \(\mathrm{B}^{-}\) (far away from the source) (A) 0 (B) \([\pi / 2]\) (C) \(\pi\) (D) \([3 \pi / 2]\)
All the tools & learning materials you need for study success - in one app.
Get started for free
Which of the following waves are not transverse in nature? (A) light emitted from a sodium lamp (B) sound waves travelling in air (C) \(\mathrm{x}\) rays from an \(\mathrm{x}\) ray machine (D) microwaves used in radar
A plane electromagnetic wave of frequency \(25 \mathrm{MHz}\) travels in free space along the \(\mathrm{x}\) direction. At a particular point in space and time \(\mathrm{E}^{-}=6.3 \mathrm{j} \wedge \mathrm{Vm}^{-1}\) then \(\mathrm{B}^{-}\) at this point is (A) \(2.1 \times 10^{-8}\) i \(\mathrm{T}\) (B) \(2.1 \times 10^{-8} \mathrm{k} \wedge \mathrm{T}\) (C) \(1.89 \times 10^{9} \mathrm{k} \wedge \mathrm{T}\) (D) \(2.52 \times 10^{-7} \mathrm{k} \wedge \mathrm{T}\)
Relation between amplitudes of electric and Magnetic field is (A) \(E_{0}=B_{0}\) (B) \(E_{0}=\mathrm{cB}_{0}\) (C) \(E_{0}=\left(B_{0} / c\right)\) (D) \(E_{0}=\left(\mathrm{c} / \mathrm{B}_{0}\right)\)
Range of frequency of microwaves is about (A) \(530 \mathrm{kHz}\) to \(1710 \mathrm{kHz}\) (B) \(54 \mathrm{MHz}\) to \(890 \mathrm{MHz}\) (C) \(3 \mathrm{GHz}\) to \(300 \mathrm{GHz}\) (D) \(4 \times 10^{14} \mathrm{~Hz}\) to \(7 \times 10^{14} \mathrm{~Hz}\)
What is the wave length of range of electromagnetic waves? (A) \(10^{-8} \mathrm{~m}\) to \(10^{15} \mathrm{~m}\) (B) \(10^{-15} \mathrm{~m}\) to \(10^{8} \mathrm{~m}\) (C) \(10^{-15} \mathrm{~m}\) to \(10^{15} \mathrm{~m}\) (D) \(10^{8} \mathrm{~m}\) to \(10^{15} \mathrm{~m}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.