Chapter 15: Problem 2154
The frequency of light wave of wavelength \(5000 \mathrm{~A}\) is \(\mathrm{Hz}\) (A) \(6 \times 10^{14}\) (B) \(1.5 \times 10^{-2}\) (C) \(1.5\) (D) \(6 \times 10^{1}\)
Chapter 15: Problem 2154
The frequency of light wave of wavelength \(5000 \mathrm{~A}\) is \(\mathrm{Hz}\) (A) \(6 \times 10^{14}\) (B) \(1.5 \times 10^{-2}\) (C) \(1.5\) (D) \(6 \times 10^{1}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUnit of \(\mu_{0} \mathrm{C}\) is same as that of (A) current (B) resistance (C) electric charge (D) velocity
Light with an energy flux of \(18 \mathrm{w} / \mathrm{m}^{2}\) or \(\mathrm{Wm}^{-2}\) falls on a non-reflecting surface at normal to surface. If the surface has an area of \(20 \mathrm{~m}^{2}\). The average force exerted on the surface during 30 minutes is (A) \(6.48 \times 10^{5} \mathrm{~N}\) (B) \(3.60 \times 10^{2} \mathrm{~N}\) (C) \(1.2 \times 10^{-6} \mathrm{~N}\) (D) \(2.16 \times 10^{-3} \mathrm{~N}\)
Relation between amplitudes of electric and Magnetic field is (A) \(E_{0}=B_{0}\) (B) \(E_{0}=\mathrm{cB}_{0}\) (C) \(E_{0}=\left(B_{0} / c\right)\) (D) \(E_{0}=\left(\mathrm{c} / \mathrm{B}_{0}\right)\)
If the electric field associated with a radiation of frequency $10 \mathrm{MH} z\( is \)\mathrm{E}=10 \sin (\mathrm{kx}-\omega \mathrm{t}) \mathrm{mV} / \mathrm{m}$ then its energy density is $\mathrm{Jm}^{-3}\left(\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)$ (A) \(4.425 \times 10^{-10}\) (B) \(6.26 \times 10^{-14}\) (C) \(8.85 \times 10^{-16}\) (D) \(8.85 \times 10^{-14}\)
At room temperature, if the relative permittivity of water is 80 and the relative permeability be \(0.0222\) then the velocity of light in water is \(\mathrm{m} / \mathrm{s}\) (A) \(2.5 \times 10^{8}\) (B) \(2.26 \times 10^{8}\) (C) \(3.5 \times 10^{8}\) (D) \(3 \times 10^{8}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.