Chapter 15: Problem 2162
If the wavelength of light is \(4000^{\circ} \mathrm{A}\) then the number of waves in \(1 \mathrm{~mm}\) length will be (A) \(2.5\) (B) 2500 (C) 250 (D) 25000
Chapter 15: Problem 2162
If the wavelength of light is \(4000^{\circ} \mathrm{A}\) then the number of waves in \(1 \mathrm{~mm}\) length will be (A) \(2.5\) (B) 2500 (C) 250 (D) 25000
All the tools & learning materials you need for study success - in one app.
Get started for freeIn an electromagnetic wave in free space, the direction of electric field vector \(E^{-}\) is along \(y\) axis and magnetic field vector \(\mathrm{B}^{-}\) is along \(\mathrm{z}\) axis then which of the following is true (A) $\left(\mathrm{E}^{-} \times \mathrm{B}^{-}\right) \times \mathrm{E}^{-}=1$ (B) $\left(\mathrm{E}^{-} \times \mathrm{B}^{-}\right) \times \mathrm{B}^{-}=1$ (C) $\left(\mathrm{E}^{-} \times \mathrm{B}^{-}\right) \times \mathrm{B}^{-}=0$ (D) none of these
The frequencies of \(\mathrm{x}\) rays, \(\gamma\) rays and ultraviolet rays are
respectively \(\mathrm{p}, \mathrm{q}\) and \(\mathrm{r}\) then
(A) \(pr\)
(B) \(p>q, q>r\)
(C) \(p>q, q
When a plane electromagnetic wave travels in vacuum, the average electric energy density is given by \(\left(E_{0}\right.\) is the amplitude of the electric field) (A) \((1 / 4) \varepsilon_{0} E_{0}^{2}\) (B) \((1 / 2) \varepsilon_{0} E_{0}^{2}\) (C) \(2 e_{\mathrm{o}} \mathrm{E}_{\mathrm{O}}^{2}\) (D) \(4 \varepsilon_{0} E_{0}^{2}\)
The frequency \(1057 \mathrm{MHz}\) of radiation arising from two close energy levels in hydrogen belongs to (A) radio waves (B) infrared waves (C) micro waves (D) \gamma rays
A plane electromagnetic wave of frequency \(25 \mathrm{MHz}\) travels in free space along the \(\mathrm{x}\) direction. At a particular point in space and time \(\mathrm{E}^{-}=6.3 \mathrm{j} \wedge \mathrm{Vm}^{-1}\) then \(\mathrm{B}^{-}\) at this point is (A) \(2.1 \times 10^{-8}\) i \(\mathrm{T}\) (B) \(2.1 \times 10^{-8} \mathrm{k} \wedge \mathrm{T}\) (C) \(1.89 \times 10^{9} \mathrm{k} \wedge \mathrm{T}\) (D) \(2.52 \times 10^{-7} \mathrm{k} \wedge \mathrm{T}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.