Chapter 15: Problem 2168
A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum \(p\) and energy \(E\), then (A) \(p=0, E=0\) (B) \(p \neq 0, E \neq 0\) (C) \(p \neq 0, E=0\) (D) \(p=0, E \neq 0\)
Chapter 15: Problem 2168
A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum \(p\) and energy \(E\), then (A) \(p=0, E=0\) (B) \(p \neq 0, E \neq 0\) (C) \(p \neq 0, E=0\) (D) \(p=0, E \neq 0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe frequencies of \(\mathrm{x}\) rays, \(\gamma\) rays and ultraviolet rays are
respectively \(\mathrm{p}, \mathrm{q}\) and \(\mathrm{r}\) then
(A) \(pr\)
(B) \(p>q, q>r\)
(C) \(p>q, q
Astronomers have found that electromagnetic waves of wavelength $21 \mathrm{~cm}$ are continuously reaching the Earth's surface. Calculate the frequency of this radiation. $\left(\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$ (A) \(14.28 \mathrm{GHz}\) (B) \(1.428 \mathrm{kHz}\) (C) \(1.428 \mathrm{MHz}\) (D) \(1.428 \mathrm{GHz}\)
An electromagnetic wave going through vacuum is described by $E=E_{0} \sin (k x-\omega t)\( then \)B=B_{0} \sin (k x-\omega t)$ then (A) \(E_{0} B_{0}=\operatorname{cok}\) (B) \(E_{0} k=B_{0} \omega\) (C) \(\mathrm{E}_{0} \mathrm{~m}=\mathrm{B}_{0} \mathrm{k}\) (D) none of these
The maximum value of \(\mathrm{E}^{-}\) in an electromagnetic waves in air is equal to \(6.0 \times 10^{-4} \mathrm{Vm}^{-1}\). The maximum value of \(\mathrm{B}^{-}\) is (A) \(1.8 \times 10^{5} \mathrm{~T}\) (B) \(2.0 \times 10^{4} \mathrm{~T}\) (C) \(2.0 \times 10^{-12} \mathrm{~T}\) (D) \(1.8 \times 10^{13} \mathrm{~T}\)
is responsible for the green house effect (A) infrared rays (B) ultraviolet rays (C) x rays (D) radiowaves
What do you think about this solution?
We value your feedback to improve our textbook solutions.