Chapter 15: Problem 2168
A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum \(p\) and energy \(E\), then (A) \(p=0, E=0\) (B) \(p \neq 0, E \neq 0\) (C) \(p \neq 0, E=0\) (D) \(p=0, E \neq 0\)
Chapter 15: Problem 2168
A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum \(p\) and energy \(E\), then (A) \(p=0, E=0\) (B) \(p \neq 0, E \neq 0\) (C) \(p \neq 0, E=0\) (D) \(p=0, E \neq 0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\lambda_{\gamma} \lambda_{\mathrm{x}}\) and \(\lambda_{\mathrm{m}}\) are the wave lengths of the \(\gamma\) -rays, \(\mathrm{x}\) rays and micro waves respectively in space then (A) \(\lambda_{\gamma}>\lambda_{\mathrm{x}}>\lambda_{\mathrm{m}}\) (B) \(\lambda_{\gamma}<\lambda_{\mathrm{x}}<\lambda_{\mathrm{m}}\) (C) \(\lambda_{r}=\lambda_{x}=\lambda_{m}\) (D) \(\lambda_{\gamma}<\lambda_{\mathrm{m}}<\lambda_{\mathrm{x}}\)
Which of the following pairs of the component of space and time varying $\mathrm{E}^{-}=\left(\mathrm{E}_{\mathrm{x}} \mathrm{i} \wedge+\mathrm{Eyj} \wedge+\mathrm{Ezk} \wedge\right)$ and $\mathrm{B}^{-}=\left(\mathrm{B}_{\mathrm{x}} \mathrm{i}^{\mathrm{i}}+\mathrm{Byj}^{\wedge}+\mathrm{Bzk} \wedge\right)$ would generate a plane electromagnetic wave travelling in \(+\) ve \(z\) direction (A) \(E x, B y\) (B) \(\mathrm{Ey}, \mathrm{Bz}\) (C) \(\mathrm{Ex}, \mathrm{Bz}\) (D) \(E z, B x\)
In a plane electromagnetic wave, the electric field oscillates sinusoidaly at a frequency of \(2.0 \times 10^{10} \mathrm{~Hz}\). if the peak value of electric field is \(60 \mathrm{Vm}^{-1}\) the average energy density (in \(\mathrm{Jm}^{-3}\) ) of the magnetic field of the wave will be (given \(\left.\mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}\right)\) (A) \(2 \pi \times 10^{-7}\) (B) \((1 / 2 \pi) \times 10^{-7}\) (C) \(4 \pi \times 10^{-7}\) (D) \((1 / 4 \pi) \times 10^{-7}\)
If \(\mathrm{V}_{\mathrm{r}}, \mathrm{V}_{\mathrm{x}}\) and \(\mathrm{V}_{\mathrm{m}}\) are the velocity of the \(\gamma\) rays, \(\mathrm{x}\) rays, micro waves respectively in space, then (A) \(\mathrm{V}_{\gamma}<\mathrm{V}_{\mathrm{x}}<\mathrm{V}_{\mathrm{m}}\) (B) \(\mathrm{V}_{\mathrm{r}}=\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{m}}\) (C) \(\mathrm{V}_{\mathrm{r}}^{\prime}>\mathrm{V}_{\mathrm{x}}>\mathrm{V}_{\mathrm{m}}\) (D) \(\mathrm{V}_{\mathrm{r}}>\mathrm{V}_{\mathrm{x}}<\mathrm{V}_{\mathrm{m}}\)
The SI unit of displacement current is (A) coulomb (B) henry (C) ampere (D) faraday
What do you think about this solution?
We value your feedback to improve our textbook solutions.