Chapter 15: Problem 2198
Infrared radiations are detected by (A) spectrometer (B) bolometer (C) photocells (D) geiger tubes
Chapter 15: Problem 2198
Infrared radiations are detected by (A) spectrometer (B) bolometer (C) photocells (D) geiger tubes
All the tools & learning materials you need for study success - in one app.
Get started for freeIn electromagnetic spectrum, the visible light lie between (A) radiowaves and microwaves (B) ultraviolet rays and infrared rays (C) ultraviolet rays and \(\mathrm{x}\) rays (D) infrared rays and microwaves
A plane electromagnetic wave of frequency \(25 \mathrm{MHz}\) travels in free space along the \(\mathrm{x}\) direction. At a particular point in space and time \(\mathrm{E}^{-}=6.3 \mathrm{j} \wedge \mathrm{Vm}^{-1}\) then \(\mathrm{B}^{-}\) at this point is (A) \(2.1 \times 10^{-8}\) i \(\mathrm{T}\) (B) \(2.1 \times 10^{-8} \mathrm{k} \wedge \mathrm{T}\) (C) \(1.89 \times 10^{9} \mathrm{k} \wedge \mathrm{T}\) (D) \(2.52 \times 10^{-7} \mathrm{k} \wedge \mathrm{T}\)
In an electromagnetic wave, if the amplitude of magnetic field is $3 \times 10^{-10} \mathrm{~T}$, the amplitude of the associated electric field will be (A) \(9 \times 10^{-2} \overline{\mathrm{Vm}^{-1}}\) (B) \(3 \times 10^{-10} \mathrm{Vm}^{-1}\) (C) \(3 \times 10^{-2} \mathrm{Vm}^{-1}\) (D) \(1 \times 10^{-18} \mathrm{Vm}^{-1}\)
The maximum electric field in a plane electromagnetic wave is $900 \mathrm{NC}^{-1}\(. The wave is going in the \)\mathrm{x}$ direction and the electric field is in the y direction. The maximum magnetic field in the wave is \(\mathrm{T}\) (A) \(3 \times 10^{-8}\) (B) \(3 \overline{\times 10^{-6}}\) (C) \(27 \times 10^{-6}\) (D) $27 \times 10^{10}$
A plane electromagnetic wave of frequency \(25 \mathrm{MHz}\) travels in free space along the \(\mathrm{x}\) direction. At a particular point in space and time \(\mathrm{E}^{-}=6.3 \mathrm{j} \wedge \mathrm{Vm}^{-1}\) then \(\mathrm{B}^{-}\) at this point is (A) \(2.1 \times 10^{-8}\) i \(\mathrm{T}\) (B) \(2.1 \times 10^{-8} \mathrm{k} \wedge \mathrm{T}\) (C) \(1.89 \times 10^{9} \mathrm{k} \wedge \mathrm{T}\) (D) \(2.52 \times 10^{-7} \mathrm{k} \wedge \mathrm{T}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.