Chapter 15: Problem 2202
Which of the following electromagnetic wave has the least wavelength? (A) radiowave (B) visible wave (C) ultraviolet rays (D) microwaves
Chapter 15: Problem 2202
Which of the following electromagnetic wave has the least wavelength? (A) radiowave (B) visible wave (C) ultraviolet rays (D) microwaves
All the tools & learning materials you need for study success - in one app.
Get started for free
Unit of energy density of electromagnetic wave is (A) \(\mathrm{Jm}^{-3}\) (B) \(\mathrm{Jm}^{-2}\) (C) \(\mathrm{wm}^{-2}\) (D) None of these
Electromagnetic waves are produced by (A) a static charge (B) a moving charge (C) an accelerating charge (D) chargeless particles
A plane electromagnetic wave of frequency \(25 \mathrm{MHz}\) travels in free space along the \(\mathrm{x}\) direction. At a particular point in space and time \(\mathrm{E}^{-}=6.3 \mathrm{j} \wedge \mathrm{Vm}^{-1}\) then \(\mathrm{B}^{-}\) at this point is (A) \(2.1 \times 10^{-8}\) i \(\mathrm{T}\) (B) \(2.1 \times 10^{-8} \mathrm{k} \wedge \mathrm{T}\) (C) \(1.89 \times 10^{9} \mathrm{k} \wedge \mathrm{T}\) (D) \(2.52 \times 10^{-7} \mathrm{k} \wedge \mathrm{T}\)
Which of the following pairs of the component of space and time varying $\mathrm{E}^{-}=\left(\mathrm{E}_{\mathrm{x}} \mathrm{i} \wedge+\mathrm{Eyj} \wedge+\mathrm{Ezk} \wedge\right)$ and $\mathrm{B}^{-}=\left(\mathrm{B}_{\mathrm{x}} \mathrm{i}^{\mathrm{i}}+\mathrm{Byj}^{\wedge}+\mathrm{Bzk} \wedge\right)$ would generate a plane electromagnetic wave travelling in \(+\) ve \(z\) direction (A) \(E x, B y\) (B) \(\mathrm{Ey}, \mathrm{Bz}\) (C) \(\mathrm{Ex}, \mathrm{Bz}\) (D) \(E z, B x\)
The maximum value of \(\mathrm{E}^{-}\) in an electromagnetic waves in air is equal to \(6.0 \times 10^{-4} \mathrm{Vm}^{-1}\). The maximum value of \(\mathrm{B}^{-}\) is (A) \(1.8 \times 10^{5} \mathrm{~T}\) (B) \(2.0 \times 10^{4} \mathrm{~T}\) (C) \(2.0 \times 10^{-12} \mathrm{~T}\) (D) \(1.8 \times 10^{13} \mathrm{~T}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.