Chapter 15: Problem 2207
was the first to predict the existence of electromagnetic waves. (A) Maxwell (B) Faraday (C) Ampere (D) hertz
Chapter 15: Problem 2207
was the first to predict the existence of electromagnetic waves. (A) Maxwell (B) Faraday (C) Ampere (D) hertz
All the tools & learning materials you need for study success - in one app.
Get started for freeA plane electromagnetic wave of frequency \(25 \mathrm{MHz}\) travels in free space along the \(\mathrm{x}\) direction. At a particular point in space and time \(\mathrm{E}^{-}=6.3 \mathrm{j} \wedge \mathrm{Vm}^{-1}\) then \(\mathrm{B}^{-}\) at this point is (A) \(2.1 \times 10^{-8}\) i \(\mathrm{T}\) (B) \(2.1 \times 10^{-8} \mathrm{k} \wedge \mathrm{T}\) (C) \(1.89 \times 10^{9} \mathrm{k} \wedge \mathrm{T}\) (D) \(2.52 \times 10^{-7} \mathrm{k} \wedge \mathrm{T}\)
The dimensional formula of energy density is (A) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (B) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\) (C) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-3}\) (D) \(\mathrm{M}^{\mathrm{l}} \mathrm{L}^{0} \mathrm{~T}^{-3}\)
Which of the following electromagnetic wave has the least frequency? (A) radiowave (B) infrared radiation (C) microwave (D) x rays
What is the name associated with the equation \(E^{\longrightarrow} \cdot d t^{-}=-(d \Phi \beta / d t)\) (A) Gauss law for electricity (B) Gauss law for magnetism (C) ampere's law (D) faraday's law
If \(\lambda_{\gamma} \lambda_{\mathrm{x}}\) and \(\lambda_{\mathrm{m}}\) are the wave lengths of the \(\gamma\) -rays, \(\mathrm{x}\) rays and micro waves respectively in space then (A) \(\lambda_{\gamma}>\lambda_{\mathrm{x}}>\lambda_{\mathrm{m}}\) (B) \(\lambda_{\gamma}<\lambda_{\mathrm{x}}<\lambda_{\mathrm{m}}\) (C) \(\lambda_{r}=\lambda_{x}=\lambda_{m}\) (D) \(\lambda_{\gamma}<\lambda_{\mathrm{m}}<\lambda_{\mathrm{x}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.