Chapter 16: Problem 2228
What is the time taken in seconds to cross a glass plate of thickness $6 \mathrm{~mm}\( and \)\mu=2.0$ by light ? (A) \(8 \times 10^{-11}\) (B) \(4 \times 10^{-11}\) (C) \(2 \times 10^{11}\) (D) \(16 \times 10^{-11}\)
Chapter 16: Problem 2228
What is the time taken in seconds to cross a glass plate of thickness $6 \mathrm{~mm}\( and \)\mu=2.0$ by light ? (A) \(8 \times 10^{-11}\) (B) \(4 \times 10^{-11}\) (C) \(2 \times 10^{11}\) (D) \(16 \times 10^{-11}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn a thin prism of glass \(\left(a_{(n) g}=1.5\right)\) which of the following relation between the angle of minimum deviation \(\delta_{\mathrm{m}}\) and the angle of refraction \(\mathrm{r}\) will be correct? (A) \(\delta_{\mathrm{m}}=(\mathrm{r} / 2)\) (B) \(\left(\delta_{\mathrm{m}} / 2\right)=\mathrm{r}\) (C) \(\delta_{\mathrm{m}}=1.5 \mathrm{r}\) (D) \(\delta_{\mathrm{m}}=\mathrm{r}\)
For four different transparent medium $\mathrm{n}_{41} \times \mathrm{n}_{12} \times \mathrm{n}_{21}=$ (A) \(\left(1 / \mathrm{n}_{41}\right)\) (B) \(\mathrm{n}_{41}\) (C) \(\mathrm{n}_{14}\) (D) \(\left(1 / \mathrm{n}_{14}\right)\)
The wave length corresponding to photon is \(0.016 \AA\). Its K.E. \(\quad\) J. $\left(\mathrm{h}=6.66 \times 10^{-34} \mathrm{SI}, \mathrm{c}=3.0 \times 10^{8} \mathrm{~ms}^{-1}\right)$ (A) \(1.237 \times 10^{-13}\) (B) \(1.237 \times 10^{13}\) (C) \(12.37 \times 10^{-13}\) (D) \(12.37 \times 10^{+13}\)
The distance between the first and sixth minima in the diffraction pattern of a single slit, it is \(0.5 \mathrm{~mm}\). The screen is \(0.5 \mathrm{~m}\) away from the Slit. If the wavelength of light is \(5000 \AA\), then the width of the slit will be \(\mathrm{mm}\) (D) \(1.0\) (A) 5 (B) \(2.5\) (C) \(1.25\)
If a ray of light is incident on a plane mirror at an angle of \(30^{\circ}\) then deviation produced by a plane mirror is (A) \(60^{\circ}\) (B) \(90^{\circ}\) (C) \(120^{\circ}\) (D) \(150^{\circ}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.