Chapter 16: Problem 2233
A concave mirror of focal length \(20 \mathrm{~cm}\) forms an virtual image having twice the linear dimensions of the object, the position of the object will be \(\mathrm{cm}\) (A) \(7.5\) (B) \(-10\) (C) 10 (D) \(-7.5\)
Chapter 16: Problem 2233
A concave mirror of focal length \(20 \mathrm{~cm}\) forms an virtual image having twice the linear dimensions of the object, the position of the object will be \(\mathrm{cm}\) (A) \(7.5\) (B) \(-10\) (C) 10 (D) \(-7.5\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich of the following will undergo maximum diffraction ? (A) \(\alpha-\) particle (B) \(\gamma\) -rays (C) radio waves (D) light waves
"Bhautik" runs towards a plane mirror with a speed of \(20 \mathrm{~ms}^{-1}\), what is the speed of his image ? (A) \(45 \mathrm{~ms}^{-1}\) (B) \(20 \mathrm{~ms}^{-1}\) (C) \(15 \mathrm{~ms}^{-1}\) (D) \(7.5 \mathrm{~ms}^{-1}\)
$$ \begin{array}{|l|l|} \hline \text { Column - I } & \text { Column - II } \\ \hline \text { (i) Minimum deviation } & \text { (a) }(\mathrm{n}-1) \mathrm{A}+\left(\mathrm{n}^{\prime}-1\right) \mathrm{A}^{\prime}=0 \\ \text { (ii) Angular dispersion } & \text { (b) }\left[\left(\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}\right) /(\mathrm{n}-1)\right] \\ \text { (iii) Dispersive power } & \text { (c) }\left(\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}\right) \mathrm{A} \\ \text { (iv) Condition for no deviation } & \text { (d) }(\mathrm{n}-1) \mathrm{A} \\ \hline \end{array} $$ (A) \(i-c\), ii \(-d\), ii \(-b\), iv-a (B) \(i-a, 1 i-b\), iii \(-c\), iv-d (C) \(i-c\), ii \(-b\), ii \(-a\), iv-d (D) $\mathrm{i}-\mathrm{d}, \mathrm{i} i-\mathrm{c}, \mathrm{ii}-\mathrm{b}, \mathrm{iv}-\mathrm{a}$
An air bubble inside glass slab \((\mathrm{n}=1.5)\) appear from one side at $6 \mathrm{~cm}\( and from other side at \)4 \mathrm{~cm}$. Then the thickness of glass slab is \(\mathrm{cm}\) (A) 5 (B) 10 (C) 15 (D) 20
To get five images of a single object one should have two plane mirrors at an angle of (A) \(36^{\circ}\) (B) \(72^{\circ}\) (C) \(80^{\circ}\) (D) \(302^{\circ}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.