Chapter 16: Problem 2242
Mono chromatic light of wavelength \(399 \mathrm{~nm}\) is incident from air on a water \((\mathrm{n}=1.33)\) Surface. The wavelength of refracted light is \(\mathrm{nm}\) (A) 300 (B) \(\overline{600}\) (C) 333 (D) 443
Chapter 16: Problem 2242
Mono chromatic light of wavelength \(399 \mathrm{~nm}\) is incident from air on a water \((\mathrm{n}=1.33)\) Surface. The wavelength of refracted light is \(\mathrm{nm}\) (A) 300 (B) \(\overline{600}\) (C) 333 (D) 443
All the tools & learning materials you need for study success - in one app.
Get started for freeA Plane mirror produces a magnification of (A) 0 (B) \(+1\) (C) \(-1\) (D) \(\infty\)
The fringe width for red $\beta_{\mathrm{r}}\left(\lambda_{\mathrm{T}}=8000 \AA\right.$ ) and the fringe width for violet \(\beta_{\mathrm{v}}\left(\lambda_{\mathrm{v}}=4000 \AA\right.\) ) then \(\left(\beta_{\mathrm{r}} / \beta_{\mathrm{v}}\right)=\) (A) \(2: 1\) (B) \(1: 2\) (C) \(1: 1\) (D) \(\sqrt{2}: 1\)
A sound source emits sound of \(600 \mathrm{~Hz}\) frequency, this sound enters by opened door of width \(0.75 \mathrm{~m} .\) Find the angle on one side at which first minimum is formed. The speed of sound \(=300 \mathrm{~ms}^{-1}\) (A) \(84.4^{\circ}\) (B) \(90^{\circ}\) (C) \(74.2^{\circ}\) (D) \(41.2^{\circ}\)
$$ \begin{array}{|l|l|} \hline \text { Column - I } & \text { Column - II } \\ \hline \text { (i) While going from rarer to denser medium } & \text { (a) Wavelength changes } \\ \text { (ii) While going from denser to rarer medium } & \text { (b) } \eta=(\mathrm{C} / \mathrm{V}) \\ \text { (iii) While going to one medium to another } & \text { (C) Ray bends towards normal } \\ \text { (iv) Refractive index of medium } & \text { (D) Rav bends awav from normal } \\ \hline \end{array} $$ (A) \(i-c\), ii \(-d\), iii \(-b\), iv-a (B) \(\mathrm{i}-\mathrm{a}\), ii \(-\mathrm{b}\), iii $-\mathrm{c}, \mathrm{iv}-\mathrm{d}$ (C) $\mathrm{i}-\mathrm{c}, \mathrm{ii}-\mathrm{b}, \mathrm{iii}-\mathrm{a}, \mathrm{iv}-\mathrm{d}$ (D) \(i-d, 1 i-c, 11 i-b, i v-a\)
The frequency of a light wave in a material is \(4 \times 10^{14} \mathrm{~Hz}\) and wavelength is \(5000 \AA\). The refractive index of material will be take \(\left.\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}\right)\) (A) \(1.5\) (B) \(1.7\) (C) \(1.33\) (D) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.