Chapter 16: Problem 2261
A plano convex lens off \(=20 \mathrm{~cm}\) is silvered at plane surface New f will be \(\quad \mathrm{cm}\) (A) 20 (B) 40 (C) 30 (D) 60
Chapter 16: Problem 2261
A plano convex lens off \(=20 \mathrm{~cm}\) is silvered at plane surface New f will be \(\quad \mathrm{cm}\) (A) 20 (B) 40 (C) 30 (D) 60
All the tools & learning materials you need for study success - in one app.
Get started for freeIn young's double slit experiment the phase difference is constant between two sources is \((\pi / 2)\). The intensity at a point equidistant from the slits in terms of max. intensity \(\mathrm{I}_{0}\) is (A) \(3 \mathrm{I}_{0}\) (B) \(\left(\mathrm{I}_{0} / 2\right)\) (C) I_{0 } (D) \(\left(3 \mathrm{I}_{0} / 4\right)\)
In young's double Slit experiment the seventh maxima with wavelength \(\lambda_{1}\), is at a distance \(\mathrm{d}_{1}\) and the same maxima with wavelength \(\lambda_{2}\), is at a distance \(\mathrm{d}_{2}\) Then \(\left(\mathrm{d}_{1} / \mathrm{d}_{2}\right)=\) (A) \(\left(\lambda_{2} / \lambda_{1}\right)\) (B) \(\left(\lambda_{1}^{2} / \lambda_{2}^{2}\right)\) (C) \(\left(\lambda_{2}^{2} / \lambda_{1}^{2}\right)\) (D) \(\left(\lambda_{1} / \lambda_{2}\right)\)
For a prism of refractive index \(\sqrt{3}\), the angle of minimum deviation is equitation is equal to the angle of prism, then angle of the prism is (A) \(60^{\circ}\) (B) \(90^{\circ}\) (C) \(45^{\circ}\) (D) \(180^{\circ}\)
$$ \begin{array}{|l|l|} \hline \text { Column - I } & \text { Column - II } \\ \hline \text { (i) While going from rarer to denser medium } & \text { (a) Wavelength changes } \\ \text { (ii) While going from denser to rarer medium } & \text { (b) } \eta=(\mathrm{C} / \mathrm{V}) \\ \text { (iii) While going to one medium to another } & \text { (C) Ray bends towards normal } \\ \text { (iv) Refractive index of medium } & \text { (D) Rav bends awav from normal } \\ \hline \end{array} $$ (A) \(i-c\), ii \(-d\), iii \(-b\), iv-a (B) \(\mathrm{i}-\mathrm{a}\), ii \(-\mathrm{b}\), iii $-\mathrm{c}, \mathrm{iv}-\mathrm{d}$ (C) $\mathrm{i}-\mathrm{c}, \mathrm{ii}-\mathrm{b}, \mathrm{iii}-\mathrm{a}, \mathrm{iv}-\mathrm{d}$ (D) \(i-d, 1 i-c, 11 i-b, i v-a\)
The focal lengths of objective and the eye-piece of a compound microscope are \(F_{0}\) and \(F_{e}\) respectively. Then (A) \(\mathrm{F}_{0}>\mathrm{F}_{\mathrm{e}}\) (B) \(\mathrm{F}_{0}<\mathrm{F}_{\mathrm{e}}\) (C) \(\mathrm{F}_{0}=\mathrm{F}_{\mathrm{e}}\) (D) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.