Chapter 16: Problem 2266
An air bubble inside glass slab \((\mathrm{n}=1.5)\) appear from one side at $6 \mathrm{~cm}\( and from other side at \)4 \mathrm{~cm}$. Then the thickness of glass slab is \(\mathrm{cm}\) (A) 5 (B) 10 (C) 15 (D) 20
Chapter 16: Problem 2266
An air bubble inside glass slab \((\mathrm{n}=1.5)\) appear from one side at $6 \mathrm{~cm}\( and from other side at \)4 \mathrm{~cm}$. Then the thickness of glass slab is \(\mathrm{cm}\) (A) 5 (B) 10 (C) 15 (D) 20
All the tools & learning materials you need for study success - in one app.
Get started for freeFor a prism of refractive index \(\sqrt{3}\), the angle of minimum deviation is equitation is equal to the angle of prism, then angle of the prism is (A) \(60^{\circ}\) (B) \(90^{\circ}\) (C) \(45^{\circ}\) (D) \(180^{\circ}\)
If thin prism of \(5^{\circ}\) gives a deviation of \(2^{\circ}\) then the refractive index of material of prism is (A) \(1.4\) (B) \(1.5\) (C) \(1.6\) (D) \(1.0\)
$$ \begin{array}{|l|l|} \hline \text { Column - I } & \text { Column - II } \\ \hline \text { (i) While going from rarer to denser medium } & \text { (a) Wavelength changes } \\ \text { (ii) While going from denser to rarer medium } & \text { (b) } \eta=(\mathrm{C} / \mathrm{V}) \\ \text { (iii) While going to one medium to another } & \text { (C) Ray bends towards normal } \\ \text { (iv) Refractive index of medium } & \text { (D) Rav bends awav from normal } \\ \hline \end{array} $$ (A) \(i-c\), ii \(-d\), iii \(-b\), iv-a (B) \(\mathrm{i}-\mathrm{a}\), ii \(-\mathrm{b}\), iii $-\mathrm{c}, \mathrm{iv}-\mathrm{d}$ (C) $\mathrm{i}-\mathrm{c}, \mathrm{ii}-\mathrm{b}, \mathrm{iii}-\mathrm{a}, \mathrm{iv}-\mathrm{d}$ (D) \(i-d, 1 i-c, 11 i-b, i v-a\)
For four different transparent medium $\mathrm{n}_{41} \times \mathrm{n}_{12} \times \mathrm{n}_{21}=$ (A) \(\left(1 / \mathrm{n}_{41}\right)\) (B) \(\mathrm{n}_{41}\) (C) \(\mathrm{n}_{14}\) (D) \(\left(1 / \mathrm{n}_{14}\right)\)
The distance between the first and sixth minima in the diffraction pattern of a single slit, it is \(0.5 \mathrm{~mm}\). The screen is \(0.5 \mathrm{~m}\) away from the Slit. If the wavelength of light is \(5000 \AA\), then the width of the slit will be \(\mathrm{mm}\) (D) \(1.0\) (A) 5 (B) \(2.5\) (C) \(1.25\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.