Chapter 16: Problem 2291
In young's double slit experiment, phase difference between light waves reaching 3rd bright fringe from central fringe with, is \((\lambda=5000 \AA)\) (A) zero (B) \(2 \pi\) (C) \(4 \pi\) (D) \(6 \pi\)
Chapter 16: Problem 2291
In young's double slit experiment, phase difference between light waves reaching 3rd bright fringe from central fringe with, is \((\lambda=5000 \AA)\) (A) zero (B) \(2 \pi\) (C) \(4 \pi\) (D) \(6 \pi\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA plano convex lens off \(=20 \mathrm{~cm}\) is silvered at plane surface New f will be \(\quad \mathrm{cm}\) (A) 20 (B) 40 (C) 30 (D) 60
$$ \begin{array}{|l|l|} \hline \text { Column - I } & \text { Column - II } \\ \hline \text { (i) Minimum deviation } & \text { (a) }(\mathrm{n}-1) \mathrm{A}+\left(\mathrm{n}^{\prime}-1\right) \mathrm{A}^{\prime}=0 \\ \text { (ii) Angular dispersion } & \text { (b) }\left[\left(\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}\right) /(\mathrm{n}-1)\right] \\ \text { (iii) Dispersive power } & \text { (c) }\left(\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}\right) \mathrm{A} \\ \text { (iv) Condition for no deviation } & \text { (d) }(\mathrm{n}-1) \mathrm{A} \\ \hline \end{array} $$ (A) \(i-c\), ii \(-d\), ii \(-b\), iv-a (B) \(i-a, 1 i-b\), iii \(-c\), iv-d (C) \(i-c\), ii \(-b\), ii \(-a\), iv-d (D) $\mathrm{i}-\mathrm{d}, \mathrm{i} i-\mathrm{c}, \mathrm{ii}-\mathrm{b}, \mathrm{iv}-\mathrm{a}$
A mark at the bottom of the liquid appears to rise by \(0.2 \mathrm{~m}\), If depth of the liquid is \(2.0 \mathrm{~m}\) then refractive index of the liquid is (A) \(1.80\) (B) \(1.60\) (C) \(1.33\) (D) \(1.11\)
In Young's double slit experiment, the intensity on screen at a point where path difference is \(\lambda\), is \(\mathrm{K}\), What will be intensity at the point where path difference is \((N 4)\) (A) \((\mathrm{K} / 2)\) (B) \(2 \mathrm{~K}\) (C) \(4 \mathrm{~K}\) (D) zero
It is difficult to see through the fog because (A) light is scattered by the droplets in the fog. (B) fog absorbs light. (C) refractive index of fog is infinity. (D) light suffers total internal refection.
What do you think about this solution?
We value your feedback to improve our textbook solutions.