Chapter 16: Problem 2303
The width of a single slit, if the first minimum is observed at an angle of \(2^{\circ}\) with a wavelength of light \(6980 \AA\) is \(\mathrm{mm}\) (A) \(0.2\) (B) \(2 \times 10^{-5}\) (C) \(2 \times 10^{5}\) (D) \(0.02\)
Chapter 16: Problem 2303
The width of a single slit, if the first minimum is observed at an angle of \(2^{\circ}\) with a wavelength of light \(6980 \AA\) is \(\mathrm{mm}\) (A) \(0.2\) (B) \(2 \times 10^{-5}\) (C) \(2 \times 10^{5}\) (D) \(0.02\)
All the tools & learning materials you need for study success - in one app.
Get started for free$$ \begin{array}{|l|l|} \hline \text { Column - I } & \text { Column - II } \\ \hline \text { (i) Minimum deviation } & \text { (a) }(\mathrm{n}-1) \mathrm{A}+\left(\mathrm{n}^{\prime}-1\right) \mathrm{A}^{\prime}=0 \\ \text { (ii) Angular dispersion } & \text { (b) }\left[\left(\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}\right) /(\mathrm{n}-1)\right] \\ \text { (iii) Dispersive power } & \text { (c) }\left(\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}\right) \mathrm{A} \\ \text { (iv) Condition for no deviation } & \text { (d) }(\mathrm{n}-1) \mathrm{A} \\ \hline \end{array} $$ (A) \(i-c\), ii \(-d\), ii \(-b\), iv-a (B) \(i-a, 1 i-b\), iii \(-c\), iv-d (C) \(i-c\), ii \(-b\), ii \(-a\), iv-d (D) $\mathrm{i}-\mathrm{d}, \mathrm{i} i-\mathrm{c}, \mathrm{ii}-\mathrm{b}, \mathrm{iv}-\mathrm{a}$
A Sound wave travels from air to water. The angle of incidence is \(\alpha_{1}\) and the angle of reflection is \(\alpha_{2}\) If the snell's Law is valid then, (A) \(\alpha_{1} \geq \alpha_{2}\) (B) \(\alpha_{1}=\alpha_{2}\) (C) \(\alpha_{1}>\alpha_{2}\) (D) \(\alpha_{1}<\alpha_{2}\)
A ray of light is incident normally on one of the faces of a solid prism of apex angle \(30^{\circ}\) and refractive index \(\sqrt{2}\). The angle of minimum deviation is (A) \(39^{\circ}\) (B) \(42^{\circ}\)
In young's double slit experiment if the width of \(3^{\text {rd }}\) fringe is \(10^{-2} \mathrm{~cm}\), then the width of \(5^{\text {th }}\) fringe will be \(\mathrm{cm} .\) (A) \(10^{-2}\) (B) \(5 \times 10^{-2}\) (C) \(2 \times 10^{-2}\) (D) \(10^{+2}\)
Which of the following phenomenon is used in optical fibers? (A) Reflection (B) Scattering (C) Total internal refraction (D) Interference
What do you think about this solution?
We value your feedback to improve our textbook solutions.