Chapter 17: Problem 2327
If kinetic energy of free electron is made double, change in de-Broglie wavelength will be........... (A) \(\sqrt{2}\) (B) \((1 / \sqrt{2})\) (C) 2 (D) \((1 / 2)\)
Chapter 17: Problem 2327
If kinetic energy of free electron is made double, change in de-Broglie wavelength will be........... (A) \(\sqrt{2}\) (B) \((1 / \sqrt{2})\) (C) 2 (D) \((1 / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen electric bulb having \(100 \mathrm{~W}\) efficiency emits photon having wavelength \(540 \mathrm{~nm}\) every second, numbers of photons will be $\ldots \ldots\left(\mathrm{h}=6 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}\right)$ (A) 100 (B) 1000 (C) \(3 \times 10^{20}\) (D) \(3 \times 10^{18}\)
Particle \(\mathrm{A}\) and \(\mathrm{B}\) have electric charge \(+\mathrm{q}\) and \(+4 \mathrm{q} .\) Both have mass \(\mathrm{m}\). If both are allowed to fall under the same p.d., ratio of velocities $\left(\mathrm{V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{B}}\right)=\ldots \ldots \ldots \ldots \ldots$ (A) \(2: 1\) (B) \(1: 2\) (C) \(1: 4\) (D) \(4: 1\)
Suppose \(\Psi(\mathrm{x}, \mathrm{y}, \mathrm{z})\) represents a particle in three dimensional space, then probability of finding the particle in the unit volume at a given point \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) is $\ldots \ldots$ (A) inversely proportional to $\Psi^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ (B) directly proportional \(\Psi^{*}\) (C) directly proportional to \(\mid \Psi \Psi^{*}\) (D) inversely proportional to \(\left|\Psi \Psi^{*}\right|\)
The ration of de-Broglie wavelengths of molecules of hydrogen and helium which are at temperature \(27^{\circ}\) and \(127^{\circ} \mathrm{C}\) respectively is \(\ldots \ldots \ldots\) (A) \((1 / 2)\) (B) \(\sqrt{(3 / 8)}\) (C) \(\sqrt{(8 / 3)}\) (D) 1
For wave concerned with proton, de-Broglie wavelength change by \(0.25 \%\). If its momentum changes by \(\mathrm{P}_{\mathrm{O}}\) initial momentum $=\ldots \ldots \ldots$ (A) \(100 \mathrm{P}_{\mathrm{O}}\) (B) \(\left\\{\mathrm{P}_{\mathrm{O}} / 400\right\\}\) (C) \(401 \mathrm{P}_{\mathrm{O}}\) (D) \(\left\\{\mathrm{P}_{\mathrm{O}} / 100\right\\}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.