Work function of metal is \(2.5 \mathrm{eV}\) If wave length of light incident on metal plate is \(3000 \AA\), stopping potential of emitted electron will be....... $\left\\{\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8}(\mathrm{~m} / \mathrm{s})\right\\}$ (A) \(0.82 \mathrm{~V}\) (B) \(0.41 \mathrm{~V}\) (C) \(1.64 \mathrm{~V}\) (D) \(3.28 \mathrm{~V}\)

Short Answer

Expert verified
The stopping potential of the emitted electron is \(1.64\,\mathrm{V}\).

Step by step solution

01

Convert work function to J

The work function (\(\phi\)) is given in electron volts (eV). To convert it to Joules (J), use the conversion factor 1 eV = \(1.6 \times 10^{-19}\mathrm{J}\). \[\phi = 2.5\,\mathrm{eV} \times \frac{1.6 \times 10^{-19}\mathrm{~J}}{1\mathrm{eV}} = 4.0 \times 10^{-19}\mathrm{J}\]
02

Calculate the energy of the incident light

The energy of the incident light can be calculated using Planck's equation, \(E = h\nu\), where \(E\) is the energy, \(h = 6.62 \times 10^{-34}\mathrm{J.s}\) is Planck's constant, and \(\nu\) is the frequency of the light. First, we need to find the frequency using the speed of light equation, \(c = \lambda\nu\). We are given \(c = 3 \times 10^{8}\,\mathrm{m/s}\) and the wavelength \(\lambda = 3000 \AA = 3000 \times 10^{-10}\,\mathrm{m}\). From the speed of light equation, \[\nu = \frac{c}{\lambda} = \frac{3 \times 10^{8}\,\mathrm{m/s}}{3000 \times 10^{-10}\,\mathrm{m}} = 1.0 \times 10^{15}\,\mathrm{Hz}\] Now we can calculate the energy of the incident light using Planck's equation, \[E = h\nu = (6.62 \times 10^{-34}\mathrm{J.s}) (1.0 \times 10^{15}\,\mathrm{Hz}) = 6.62 \times 10^{-19}\,\mathrm{J}\]
03

Determine the stopping potential

To find the stopping potential (\(V_\text{stop}\)), we will use the photoelectric effect equation, \[V_\text{stop} = \frac{E - \phi}{e}\] where \(E\) is the energy of the incident light calculated in Step 2, \(\phi\) is the work function calculated in Step 1, and \(e = 1.6 \times 10^{-19}\mathrm{C}\) is the elementary charge. Using the values obtained in Step 1 and Step 2, \[V_\text{stop} = \frac{(6.62 \times 10^{-19}\,\mathrm{J}) - (4.0 \times 10^{-19}\,\mathrm{J})}{1.6 \times 10^{-19}\mathrm{C}} = \frac{2.62 \times 10^{-19}\,\mathrm{J}}{1.6 \times 10^{-19}\mathrm{C}}\]
04

Calculate the stopping potential

Finally, let's calculate the stopping potential: \[V_\text{stop} = \frac{2.62 \times 10^{-19}\mathrm{J}}{1.6 \times 10^{-19}\mathrm{C}} = 1.64\,\mathrm{V}\] The stopping potential of the emitted electron is \(1.64\,\mathrm{V}\). Thus, the correct answer is (C) \(1.64\,\mathrm{V}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Radius of a nucleus \(2 \times 10^{-15} \mathrm{~m} .\) If we imagine an electron inside the nucleus then energy of electron will be $=\ldots \ldots . \mathrm{MeV}$ $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}, \mathrm{~h}=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}$ (A) \(6.98 \times 10^{3}\) (B) \(8.94 \times 10^{3}\) (C) \(4.98 \times 10^{3}\) (D) \(9.48 \times 10^{3}\)

Work function of \(\mathrm{Zn}\) is \(3.74 \mathrm{eV}\). If the sphere of \(\mathrm{Zn}\) is illuminated by the X-ray of wavelength \(12 \AA\) the maximum potential produced on the sphere is \(\ldots \ldots \ldots\) \(\left(\mathrm{h}-6.625 \times 10^{-34 \mathrm{~J}-\mathrm{s}}\right)\) (A) \(10.314 \mathrm{~V}\) (B) \(103.14 \mathrm{~V}\) (C) \(1031.4 \mathrm{~V}\) (D) \(10314 \mathrm{~V}\)

A body of mass \(200 \mathrm{~g}\) moves at the speed of $5 \mathrm{~m} / \mathrm{hr}$. So deBroglie wavelength related to it is of the order........ \(\left(\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)\) (A) \(10^{-10} \mathrm{~m}\) (B) \(10^{-20} \mathrm{~m}\) (C) \(10^{-30} \mathrm{~m}\) (D) \(10^{-40} \mathrm{~m}\)

U. V. light of wavelength \(200 \mathrm{~nm}\) is incident on polished surface of Fe. work function of the surface is \(4.5 \mathrm{eV}\). Find maximum speed of phote electrons. $\left(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$ (A) \(7.75 \times 10^{4}(\mathrm{~m} / \mathrm{s})\) (B) \(875 \times 10^{5}(\mathrm{~m} / \mathrm{s})\) (C) \(8.75 \times 10^{4}(\mathrm{~m} / \mathrm{s})\) (D) \(7.75 \times 10^{5}(\mathrm{~m} / \mathrm{s})\)

An electron is at a distance of \(10 \mathrm{~m}\) form a charge of $10 \mathrm{C}\(. Its total energy is \)15.6 \times 10^{-10} \mathrm{~J}$. Its de Broglie wavelength at this point is \(\ldots \ldots\) $\left(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg} . \mathrm{K}=9 \times 10^{9} \mathrm{SI}\right)$ (A) \(9.87 \AA\) (B) \(9.87\) Fermi (C) \(8.97 \mathrm{~A}\) (D) \(8.97\) Fermi

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free