Frequency of photon having energy \(66 \mathrm{eV}\) is ....... \(\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)\) (A) \(8 \times 10^{-15} \mathrm{~Hz}\) (B) \(12 \times 10^{-15} \mathrm{~Hz}\) (C) \(16 \times 10^{-15} \mathrm{~Hz}\) (D) \(24 \times 10^{+15} \mathrm{~Hz}\)

Short Answer

Expert verified
The frequency of the photon having energy 66 eV is \(16 \times 10^{-15}\mathrm{~Hz}\).

Step by step solution

01

Convert energy to joules

Given energy, E = 66 eV. To convert energy into joules, we can use the conversion factor 1 eV = 1.6 × 10^{-19} J. \(E = 66 \text{ eV} \times \frac{1.6 \times 10^{-19} J}{1 \text{ eV}}\) E = 1.056 × 10^{-17} J Now we have the energy in joules.
02

Use the formula to find frequency

Now we can use the formula: Energy (E) = Planck's constant (h) × Frequency (ν) We are given Planck's constant, h = 6.6 × 10^{-34} J·s. We can rearrange the formula to find the frequency: \(ν = \frac{E}{h}\) Plug in the values for E and h: \(ν = \frac{1.056 \times 10^{-17} J}{6.6 \times 10^{-34} J.s}\)
03

Calculate the frequency and select the correct option

After dividing the energy by Planck's constant, we get the frequency: ν = 1.6 × 10^{16} Hz We can write this in scientific notation as: ν = 16 × 10^{15} Hz Comparing this value to the available options, we see that it matches option (C): (C) \(16 \times 10^{-15} \mathrm{~Hz}\) So the frequency of the photon having energy 66 eV is \(16 \times 10^{-15}\mathrm{~Hz}\). Option (C) is the correct answer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The work function of a metal is \(1 \mathrm{eV}\). Light of wavelength $3000 \AA$ is incident on this metal surface. The maximum velocity of emitted photoelectron will be \(\ldots \ldots .\) (A) \(10 \mathrm{~ms}^{-1}\) (B) \(10^{3} \mathrm{~ms}^{-1}\) (C) \(10^{4} \mathrm{~ms}^{-1}\) (D) \(10^{6} \mathrm{~ms}^{-1}\)

Wavelength \(\lambda_{\mathrm{A}}\) and \(\lambda_{\mathrm{B}}\) are incident on two identical metal plates and photo electrons are emitted. If \(\lambda_{\mathrm{A}}=2 \lambda_{\mathrm{B}}\), the maximum kinetic energy of photo electrons is \(\ldots \ldots \ldots\) (A) \(2 \mathrm{~K}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}\) (B) \(\mathrm{K}_{\mathrm{A}}<\left(\mathrm{K}_{\mathrm{B}} / 2\right)\) (C) \(\mathrm{K}_{\mathrm{A}}=2 \mathrm{~K}_{\mathrm{B}}\) (D) \(\mathrm{K}_{\mathrm{A}}>\left(\mathrm{K}_{\mathrm{B}} / 2\right)\)

Find the velocity at which mass of a proton becomes \(1.1\) times its rest mass, \(\mathrm{m}_{\mathrm{g}}=1.6 \times 10^{-27} \mathrm{~kg}\) Also, calculate corresponding temperature. For simplicity, consider a proton as non- interacting ideal-gas particle at \(1 \mathrm{~atm}\) pressure. $\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \cdot \mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}\right)$ (A) $\mathrm{V}=1.28 \times 10^{8}(\mathrm{~m} / \mathrm{s}), \mathrm{T}=7.65 \times 10^{12} \mathrm{~K}$ (B) $\mathrm{V}=12.6 \times 10^{8}(\mathrm{~m} / \mathrm{s}), \mathrm{T}=7.65 \times 10^{11} \mathrm{~K}$ (C) $\mathrm{V}=1.26 \times 10^{7}(\mathrm{~m} / \mathrm{s}), \mathrm{T}=5.76 \times 10^{11} \mathrm{~K}$ (D) $\mathrm{V}=12.6 \times 10^{7}(\mathrm{~m} / \mathrm{s}), \mathrm{T}=7.56 \times 10^{11} \mathrm{~K}$

Work function of metal is \(2.5 \mathrm{eV}\) If wave length of light incident on metal plate is \(3000 \AA\), stopping potential of emitted electron will be....... $\left\\{\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8}(\mathrm{~m} / \mathrm{s})\right\\}$ (A) \(0.82 \mathrm{~V}\) (B) \(0.41 \mathrm{~V}\) (C) \(1.64 \mathrm{~V}\) (D) \(3.28 \mathrm{~V}\)

Energy of photon of light having two different frequencies are \(2 \mathrm{eV}\) and \(10 \mathrm{eV}\) respectively. If both are incident on the metal having work function \(1 \mathrm{eV}\), ratio of maximum velocities of emitted electron is ............ (A) \(1: 5\) (B) \(3: 11\) (C) \(2: 9\) (D) \(1: 3\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free