Chapter 17: Problem 2374
Kinetic energy of proton accelerated under p.d. \(1 \mathrm{~V}\) will be........ (A) \(1840 \mathrm{eV}\) (B) \(13.6 \mathrm{eV}\) (C) \(1 \mathrm{eV}\) (D) \(0.54 \mathrm{eV}\)
Chapter 17: Problem 2374
Kinetic energy of proton accelerated under p.d. \(1 \mathrm{~V}\) will be........ (A) \(1840 \mathrm{eV}\) (B) \(13.6 \mathrm{eV}\) (C) \(1 \mathrm{eV}\) (D) \(0.54 \mathrm{eV}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUncertainty in position of electron is found of the order of de-Broglie wavelength. Using Heisenberg's uncertainty principle, it is found that order of uncertainty in its velocity \(=\ldots \ldots \ldots .\) (A) \(1 \mathrm{v}\) (B) \(2 \mathrm{v}\) (C) \((\mathrm{v} / 2 \pi)\) (D) \(2 \pi \mathrm{v}\)
Suppose \(\Psi(\mathrm{x}, \mathrm{y}, \mathrm{z})\) represents a particle in three dimensional space, then probability of finding the particle in the unit volume at a given point \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) is $\ldots \ldots$ (A) inversely proportional to $\Psi^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ (B) directly proportional \(\Psi^{*}\) (C) directly proportional to \(\mid \Psi \Psi^{*}\) (D) inversely proportional to \(\left|\Psi \Psi^{*}\right|\)
In photo electric effect, if threshold wave length of a metal is \(5000 \AA\) work function of this metal is ..........V. $\left(\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$ (A) \(1.24\) (B) \(2.48\) (C) \(4.96\) (D) \(3.72\)
Matching type questions: (Match, Column-I and Column-II property) Column-I Column-II (I) Quantization of charge (P) Diffraction of light (II) Wave nature of light (Q) de Broglie hypothesis (III) Dual nature of matter (R) Photo-electric effect (IV) Particle nature of light (S) Millikan's drop experiment (A) $\mathrm{I}-\mathrm{P}, \mathrm{II}-\mathrm{Q}, \mathrm{III}-\mathrm{R}, \mathrm{IV}-\mathrm{S}$ (B) $\mathrm{I}-\mathrm{S}, \mathrm{II}-\mathrm{P}, \mathrm{III}-\mathrm{Q}, \mathrm{IV}-\mathrm{R}$ (C) $\mathrm{I}-\mathrm{Q}, \mathrm{II}-\mathrm{R}, \mathrm{III}-\mathrm{S}, \mathrm{IV}-\mathrm{P}$ (D) \(I-R . I I-S . I I I-P . I V-O\)
Energy corresponding to threshed frequency of metal is \(6.2 \mathrm{eV}\). If stopping potential corresponding to radiation incident on surface is $5 \mathrm{~V}\(, incident radiation will be in the \)\ldots \ldots \ldots \ldots \ldots$ region. (A) X-ray (B) Ultraviolet (C) infrared (D) Visible
What do you think about this solution?
We value your feedback to improve our textbook solutions.