Chapter 17: Problem 2375
Which of the following phenomenon can not be explained by quantum theory of light? (A) Emission of radiation from black body (B) Photo electric effect (C) Polarization (D) Crompton effect
Chapter 17: Problem 2375
Which of the following phenomenon can not be explained by quantum theory of light? (A) Emission of radiation from black body (B) Photo electric effect (C) Polarization (D) Crompton effect
All the tools & learning materials you need for study success - in one app.
Get started for free
Radius of a nucleus \(2 \times 10^{-15} \mathrm{~m} .\) If we imagine an electron inside the nucleus then energy of electron will be $=\ldots \ldots . \mathrm{MeV}$ $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}, \mathrm{~h}=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}$ (A) \(6.98 \times 10^{3}\) (B) \(8.94 \times 10^{3}\) (C) \(4.98 \times 10^{3}\) (D) \(9.48 \times 10^{3}\)
Read the paragraph carefully and select the proper choice from given multiple choices. According to Einstein when a photon of light of frequency for wavelength \(\lambda\) is incident on a photo sensitive metal surface of work function \(\Phi\). Where \(\Phi<\mathrm{hf}\) (here \(\mathrm{h}\) is Plank's constant) then the emission of photo-electrons place takes place. The maximum K.E. of emitted photo electrons is given by $\mathrm{K}_{\max }=\mathrm{hf}-\Phi .\( If the there hold frequency of metal is \)\mathrm{f}_{0}$ then \(\mathrm{hf}_{0}=\Phi\) (i) A metal of work function \(3.3 \mathrm{eV}\) is illuminated by light of wave length \(300 \mathrm{~nm}\). The maximum \(\mathrm{K} . \mathrm{E}>\) of photo- electrons is $=\ldots \ldots \ldots . \mathrm{eV} .\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J} \cdot \mathrm{sec}\right)$ (A) \(0.825\) (B) \(0.413\) (C) \(1.32\) (D) \(1.65\) (ii) Stopping potential of emitted photo-electron is $=\ldots \ldots . \mathrm{V}$. (A) \(0.413\) (B) \(0.825\) (C) \(1.32\) (D) \(1.65\) (iii) The threshold frequency fo $=\ldots \ldots \ldots \times 10^{14} \mathrm{~Hz}$. (A) \(4.0\) (B) \(4.2\) (C) \(8.0\) (D) \(8.4\)
Matching type questions: (Match, Column-I and Column-II property) Column-I Column-II (I) Quantization of charge (P) Diffraction of light (II) Wave nature of light (Q) de Broglie hypothesis (III) Dual nature of matter (R) Photo-electric effect (IV) Particle nature of light (S) Millikan's drop experiment (A) $\mathrm{I}-\mathrm{P}, \mathrm{II}-\mathrm{Q}, \mathrm{III}-\mathrm{R}, \mathrm{IV}-\mathrm{S}$ (B) $\mathrm{I}-\mathrm{S}, \mathrm{II}-\mathrm{P}, \mathrm{III}-\mathrm{Q}, \mathrm{IV}-\mathrm{R}$ (C) $\mathrm{I}-\mathrm{Q}, \mathrm{II}-\mathrm{R}, \mathrm{III}-\mathrm{S}, \mathrm{IV}-\mathrm{P}$ (D) \(I-R . I I-S . I I I-P . I V-O\)
A proton and electron are lying in a box having impenetrable walls, the ratio of uncertainty in their velocities are \(\ldots \ldots\) \(\left(\mathrm{m}_{\mathrm{e}}=\right.\) mass of electron and \(\mathrm{m}_{\mathrm{p}}=\) mass of proton. (A) \(\left(\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)\) (B) \(\mathrm{m}_{\mathrm{e}} \cdot \mathrm{m}_{\mathrm{p}}\) (C) \(\left.\sqrt{\left(m_{e}\right.} \cdot m_{p}\right)\) (D) \(\sqrt{\left(m_{e} / m_{p}\right)}\)
An electron enters perpendicularly into uniform magnetic field having magnitude \(0.5 \times 10^{-5} \mathrm{~T}\). If it moves on a circular path of radius \(2 \mathrm{~mm}\), its de - Broglie wavelength is $\ldots \ldots . . . \AA$ (A) 3410 (B) 4140 (C) 2070 (D) 2785
What do you think about this solution?
We value your feedback to improve our textbook solutions.