Chapter 17: Problem 2378
With how much p.d. should an electron be accelerated, so that its de-Broglie wavelength is \(0.4 \AA\) (A) \(9410 \mathrm{~V}\) (B) \(94.10 \mathrm{~V}\) (C) \(9.140 \mathrm{~V}\) (D) \(941.0 \mathrm{~V}\)
Chapter 17: Problem 2378
With how much p.d. should an electron be accelerated, so that its de-Broglie wavelength is \(0.4 \AA\) (A) \(9410 \mathrm{~V}\) (B) \(94.10 \mathrm{~V}\) (C) \(9.140 \mathrm{~V}\) (D) \(941.0 \mathrm{~V}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeRation of momentum of photons having wavelength \(4000 \AA \& 8000 \AA\) is ........... (A) \(2: 1\) (B) \(1: 2\) (C) \(20: 1\) (D) \(1: 20\)
Work function of metal is \(2.5 \mathrm{eV}\) If wave length of light incident on metal plate is \(3000 \AA\), stopping potential of emitted electron will be....... $\left\\{\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8}(\mathrm{~m} / \mathrm{s})\right\\}$ (A) \(0.82 \mathrm{~V}\) (B) \(0.41 \mathrm{~V}\) (C) \(1.64 \mathrm{~V}\) (D) \(3.28 \mathrm{~V}\)
A proton, a deuteron and an \(\propto\) -particle having the same momentum, enters a region of uniform electric field between the parallel plates of a capacitor. The electric field is perpendicular to the initial path of the particles. Then the ratio of deflections suffered by them is (A) \(1: 2: 8\) (B) \(1: 2: 4\) (C) \(1: 1: 2\) (D) None of these
If de-Broglie wavelength of electron is increased by \(1 \%\) its momentum \(\ldots \ldots\) (A) increases by \(1 \%\) (B) decreases by \(1 \%\) (C) increased by \(2 \%\) (D) decreases by \(2 \%\)
Frequency of incident light on body is \(\mathrm{f}\). Threshold frequency of body is \(f_{0}\). Maximum velocity of electron \(=\ldots \ldots \ldots\).. where \(m\) is mass of electron. (A) $\left[\left\\{2 \mathrm{~h}\left(\mathrm{f}-\mathrm{f}_{0}\right)\right\\} / \mathrm{m}\right]^{(1 / 2)}$ (B) $\left[\left\\{2 \mathrm{~h}\left(\mathrm{f}-\mathrm{f}_{0}\right)\right\\} / \mathrm{m}\right]$ (C) \([2 \mathrm{hf} / \mathrm{m}]^{(1 / 2)}\) (D) \(\mathrm{h}\left(\mathrm{f}-\mathrm{f}_{0}\right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.