Chapter 17: Problem 2382
Energy of a particle having de-Broglie wavelength \(0.004 \AA\) is... (A) \(1280 \mathrm{eV}\) (B) \(1200 \mathrm{eV}\) (C) \(1200 \mathrm{MeV}\) (D) \(1200 \mathrm{GeV}\)
Chapter 17: Problem 2382
Energy of a particle having de-Broglie wavelength \(0.004 \AA\) is... (A) \(1280 \mathrm{eV}\) (B) \(1200 \mathrm{eV}\) (C) \(1200 \mathrm{MeV}\) (D) \(1200 \mathrm{GeV}\)
All the tools & learning materials you need for study success - in one app.
Get started for free
Energy of photon of light having two different frequencies are \(2 \mathrm{eV}\) and \(10 \mathrm{eV}\) respectively. If both are incident on the metal having work function \(1 \mathrm{eV}\), ratio of maximum velocities of emitted electron is ............ (A) \(1: 5\) (B) \(3: 11\) (C) \(2: 9\) (D) \(1: 3\)
Suppose \(\Psi(\mathrm{x}, \mathrm{y}, \mathrm{z})\) represents a particle in three dimensional space, then probability of finding the particle in the unit volume at a given point \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) is $\ldots \ldots$ (A) inversely proportional to $\Psi^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ (B) directly proportional \(\Psi^{*}\) (C) directly proportional to \(\mid \Psi \Psi^{*}\) (D) inversely proportional to \(\left|\Psi \Psi^{*}\right|\)
When a radiation of wavelength \(3000 \AA\) is incident on metal, $1.85 \mathrm{~V}$ stopping potential is obtained. What will be threshed wave length of metal? $\left\\{\mathrm{h}=66 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8}(\mathrm{~m} / \mathrm{s})\right\\}$ (A) \(4539 \AA\) (B) \(3954 \AA\) (C) \(5439 \AA\) (D) \(4395 \AA\)
Uncertainty in position of electron is found of the order of de-Broglie wavelength. Using Heisenberg's uncertainty principle, it is found that order of uncertainty in its velocity \(=\ldots \ldots \ldots .\) (A) \(1 \mathrm{v}\) (B) \(2 \mathrm{v}\) (C) \((\mathrm{v} / 2 \pi)\) (D) \(2 \pi \mathrm{v}\)
Radius of a nucleus \(2 \times 10^{-15} \mathrm{~m} .\) If we imagine an electron inside the nucleus then energy of electron will be $=\ldots \ldots . \mathrm{MeV}$ $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}, \mathrm{~h}=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}$ (A) \(6.98 \times 10^{3}\) (B) \(8.94 \times 10^{3}\) (C) \(4.98 \times 10^{3}\) (D) \(9.48 \times 10^{3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.