Chapter 17: Problem 2399
Wavelength of an electron having energy \(10 \mathrm{ke} \mathrm{V}\) is $\ldots \ldots . \AA$ (A) \(0.12\) (B) \(1.2\) (C) 12 (D) 120
Chapter 17: Problem 2399
Wavelength of an electron having energy \(10 \mathrm{ke} \mathrm{V}\) is $\ldots \ldots . \AA$ (A) \(0.12\) (B) \(1.2\) (C) 12 (D) 120
All the tools & learning materials you need for study success - in one app.
Get started for freeEnergy of photon having wavelength \(\lambda\) is \(2 \mathrm{eV}\). This photon when incident on metal. Maximum velocity of emitted is \(\mathrm{V}\). If \(\lambda\) is decreased \(25 \%\) and maximum velocity is made double, work function of metal is \(\ldots \ldots \ldots . . \mathrm{V}\) (A) \(1.2\) (B) \(1.5\) (C) \(1.6\) (D) \(1.8\)
de-Broglie wavelength of atom at T \(\mathrm{K}\) absolute temperature will be \(\ldots \ldots \ldots\) (A) \([\mathrm{h} /\\{\mathrm{mkT}\\}]\) (B) \([\mathrm{h} /\\{\sqrt{3} \mathrm{mKT}\\}]\) (C) \([\\{\sqrt{2} \mathrm{mKT}\\} / \mathrm{h}]\) (D) \(\sqrt{(2 \mathrm{mKT})}\)
Find the velocity at which mass of a proton becomes \(1.1\) times its rest mass, \(\mathrm{m}_{\mathrm{g}}=1.6 \times 10^{-27} \mathrm{~kg}\) Also, calculate corresponding temperature. For simplicity, consider a proton as non- interacting ideal-gas particle at \(1 \mathrm{~atm}\) pressure. $\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \cdot \mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}\right)$ (A) $\mathrm{V}=1.28 \times 10^{8}(\mathrm{~m} / \mathrm{s}), \mathrm{T}=7.65 \times 10^{12} \mathrm{~K}$ (B) $\mathrm{V}=12.6 \times 10^{8}(\mathrm{~m} / \mathrm{s}), \mathrm{T}=7.65 \times 10^{11} \mathrm{~K}$ (C) $\mathrm{V}=1.26 \times 10^{7}(\mathrm{~m} / \mathrm{s}), \mathrm{T}=5.76 \times 10^{11} \mathrm{~K}$ (D) $\mathrm{V}=12.6 \times 10^{7}(\mathrm{~m} / \mathrm{s}), \mathrm{T}=7.56 \times 10^{11} \mathrm{~K}$
How many photons of red colored light having wavelength \(8000 \AA\) will have same energy as one photon of violet colored light of wavelength \(4000 \AA\) ? (A) 2 (B) 4 (C) 6 (D) 8
The mass of a particle is 400 times than that of an electron and charge is double. The particle is accelerated by \(5 \mathrm{~V}\). Initially the particle remained at rest, then its final kinetic energy is \(\ldots \ldots \ldots\) (A) \(5 \mathrm{eV}\) (B) \(10 \mathrm{eV}\) (C) \(100 \mathrm{eV}\) (D) \(2000 \mathrm{eV}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.