Chapter 17: Problem 2414
In which of the following phenomena the photon picture is required? (A) Energy distribution in black body radiation (B) Compton scattering (C) Photoelectric effect (D) all of the above
Chapter 17: Problem 2414
In which of the following phenomena the photon picture is required? (A) Energy distribution in black body radiation (B) Compton scattering (C) Photoelectric effect (D) all of the above
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose \(\Psi(\mathrm{x}, \mathrm{y}, \mathrm{z})\) represents a particle in three dimensional space, then probability of finding the particle in the unit volume at a given point \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) is $\ldots \ldots$ (A) inversely proportional to $\Psi^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ (B) directly proportional \(\Psi^{*}\) (C) directly proportional to \(\mid \Psi \Psi^{*}\) (D) inversely proportional to \(\left|\Psi \Psi^{*}\right|\)
With how much p.d. should an electron be accelerated, so that its de-Broglie wavelength is \(0.4 \AA\) (A) \(9410 \mathrm{~V}\) (B) \(94.10 \mathrm{~V}\) (C) \(9.140 \mathrm{~V}\) (D) \(941.0 \mathrm{~V}\)
Frequency of incident light on body is \(\mathrm{f}\). Threshold frequency of body is \(f_{0}\). Maximum velocity of electron \(=\ldots \ldots \ldots\).. where \(m\) is mass of electron. (A) $\left[\left\\{2 \mathrm{~h}\left(\mathrm{f}-\mathrm{f}_{0}\right)\right\\} / \mathrm{m}\right]^{(1 / 2)}$ (B) $\left[\left\\{2 \mathrm{~h}\left(\mathrm{f}-\mathrm{f}_{0}\right)\right\\} / \mathrm{m}\right]$ (C) \([2 \mathrm{hf} / \mathrm{m}]^{(1 / 2)}\) (D) \(\mathrm{h}\left(\mathrm{f}-\mathrm{f}_{0}\right)\)
Radius of a beam of radiation of wavelength \(5000 \AA\) is $10^{-3} \mathrm{~m}\(. Power of the beam is \)10^{-3} \mathrm{~W}$. This beam is normally incident on a metal of work function \(1.9 \mathrm{eV}\). The charge emitted by the metal per unit area in unit time is \(\ldots \ldots \ldots\) Assume that each incident photon emits one electron. $\left(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)$ (A) \(1.282 \mathrm{C}\) (B) \(12.82 \mathrm{C}\) (C) \(128.2 \mathrm{C}\) (D) \(1282 \mathrm{C}\)
Work function of metal is \(2.5 \mathrm{eV}\) If wave length of light incident on metal plate is \(3000 \AA\), stopping potential of emitted electron will be....... $\left\\{\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8}(\mathrm{~m} / \mathrm{s})\right\\}$ (A) \(0.82 \mathrm{~V}\) (B) \(0.41 \mathrm{~V}\) (C) \(1.64 \mathrm{~V}\) (D) \(3.28 \mathrm{~V}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.