Chapter 18: Problem 2465
Energy levels \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) of a certain atom
corresponding values of energy i.e. \(E_{A}
Chapter 18: Problem 2465
Energy levels \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) of a certain atom
corresponding values of energy i.e. \(E_{A}
All the tools & learning materials you need for study success - in one app.
Get started for freeMatch column I and II column I \(\frac{\text { column I }}{\text { fnucleus }}\) (a) size of (b) number of Proton in a nucleus column II (p) Z (q) \(10^{-15} \mathrm{~m}\) (r) \((\mathrm{A}-\mathrm{Z})\) (s) \(10^{-10} \mathrm{~m}\) 0 (c) size of Atom (d) Number of neutrons in a nucleus (A) $\mathrm{a} \rightarrow \mathrm{r}, \mathrm{b} \rightarrow \mathrm{s}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{p}$ (B) $\mathrm{a} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{r}$ (C) $\mathrm{a} \rightarrow \mathrm{s}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{p}$ (D) $\mathrm{b} \rightarrow \mathrm{s}, \mathrm{c} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{r}$
Large angle scattering of \(\alpha-\) particle could not be explained by (A) Thomson model (B) Rutherford model (C) Both Thomson and Rutherford model (D) neither Thomson nor Rutherford model
The total energy of the electron in the first excited state of hydrogen is \(-3.4 \mathrm{eV}\). what is the kinetic energy of the electron in this state? (A) \(6.8 \mathrm{eV}\) (B) \(3.4 \mathrm{eV}\) (C) \(-3.4 \mathrm{eV}\) \((\mathrm{D})-6.8 \mathrm{eV}\)
If \(13.6 \mathrm{eV}\) energy is required to ionise the hydrogen atom the energy required to remove the electron form \(n=2\) state is (A) Zero (B) \(10.2 \mathrm{eV}\) (C) \(6.8 \mathrm{eV}\) (D) \(3.4 \mathrm{eV}\)
The binding energy Per nucleon of deuteron $\left({ }^{2}{ }_{1} \mathrm{H}\right)\( and Lielium nucleus \){ }_{2}{ }^{4}{ }_{2} \mathrm{He}$ ) is \(1.1 \mathrm{MeV}\) and \(7.0 \mathrm{MeV}\). respectively. If two deuteron react to form a single helium nucleus, the energy released is (A) \(23.6 \mathrm{MeV}\) (B) \(26.9 \mathrm{MeV}\) (C) \(13.9 \mathrm{MeV}\) (D) \(19.2 \mathrm{MeV}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.