Chapter 18: Problem 2476
which of the following isotopes normally fissionable (A) \({ }_{92} \mathrm{U}^{233}\) (B) \({ }_{92} \mathrm{U}^{238}\) (C) \({ }_{92} \mathrm{U}^{235}\) (D) \({ }_{93} \mathrm{~Np}^{239}\)
Chapter 18: Problem 2476
which of the following isotopes normally fissionable (A) \({ }_{92} \mathrm{U}^{233}\) (B) \({ }_{92} \mathrm{U}^{238}\) (C) \({ }_{92} \mathrm{U}^{235}\) (D) \({ }_{93} \mathrm{~Np}^{239}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEnergy levels \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) of a certain atom
corresponding values of energy i.e. \(E_{A}
In the following nuclear fusion reaction ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0} \mathrm{n}^{1}$ the repulsive potential energy between the two fusing nuclei is $7.7 \times 10^{-14} \mathrm{~J}$. The Temperature to which the gas must be heated is nearly (Boltzman constant \(\mathrm{K}=1.38 \times 10^{-23} \mathrm{JK}^{-1}\) ) (A) \(10^{3} \mathrm{~K}\) (B) \(10^{5} \mathrm{~K}\) (C) \(10^{7} \mathrm{~K}\) (D) \(10^{9} \mathrm{~K}\)
The nucleus at rest disintegrate into two nuclear parts which have their velocities in the ratio \(2: 1\) The ratio of their nuclear sizes will be (A) \(2^{(1 / 3)}: 1\) (B) \(1: 2^{(1 / 3)}\) (C) \(3^{(1 / 2)}: 1\) (D) \(1: 3^{(1 / 2)}\)
In the nuclear reaction \(\mathrm{X}(\eta, \alpha)_{3}^{7}\) Li the atom \(\mathrm{X}\) will be (A) \({ }_{2} \mathrm{He}^{4}\) (B) \(_{5} \mathrm{~B}^{11}\) (C) \(_{5} \mathrm{~B}^{10}\) (D) \({ }_{5} \mathrm{~B}^{9}\)
excited hydrogen atom emits a Photon of wave length \(\lambda\) in returning to the ground state The quantum number \(\mathrm{n}\) of excited state is given by (A) \(\sqrt{[}(\lambda . \mathrm{R}-1) /(\lambda \mathrm{R})]\) (B) \(\sqrt{[}(\lambda \mathrm{R}) /(\lambda \mathrm{R}-1)]\) (C) \(\sqrt{[\lambda R}(\lambda \mathrm{R}-1)]\) (D) \(\lambda \mathrm{R}(\mathrm{R}-1)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.