Chapter 18: Problem 2481
If \(13.6 \mathrm{eV}\) energy is required to ionise the hydrogen atom the energy required to remove the electron form \(n=2\) state is (A) Zero (B) \(10.2 \mathrm{eV}\) (C) \(6.8 \mathrm{eV}\) (D) \(3.4 \mathrm{eV}\)
Chapter 18: Problem 2481
If \(13.6 \mathrm{eV}\) energy is required to ionise the hydrogen atom the energy required to remove the electron form \(n=2\) state is (A) Zero (B) \(10.2 \mathrm{eV}\) (C) \(6.8 \mathrm{eV}\) (D) \(3.4 \mathrm{eV}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA radiation of energy \(\mathrm{E}\) falls normally on a Perfect reflecting surface. The momentum transferred to the surface is. (A) \((\mathrm{E} / \mathrm{c})\) (B) \((2 \mathrm{E} / \mathrm{c})\) (C) \(\left(\mathrm{E} / \mathrm{c}^{2}\right)\) (D) Ec
Match column I and II and chose correct Answer form the given below. (a) Nuclear fusion (p) converts some matter into energy (b) Nuclear fission (q) generally Possible for nuclei with low atomic number (c) \(\beta\) decay (r) generally Possible for nuclei with high atomic number (d) Exothermic nuclear (s) Essentially Proceeds by weak reaction nuclear force(c) (A) $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{q}$ (B) $\mathrm{a} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{p}, \mathrm{d} \rightarrow \mathrm{s}$ (C) $\mathrm{a} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{p}$ (D) $\mathrm{a} \rightarrow \mathrm{r}, \mathrm{b} \rightarrow \mathrm{q}, \mathrm{c} \rightarrow \mathrm{p}, \mathrm{d} \rightarrow \mathrm{s}$
If \(\mathrm{M}_{0}\) is the mass of an isotope, ${ }^{17}{ }_{8} \mathrm{O}, \mathrm{M}_{\mathrm{p}}\( and \)\mathrm{M}_{\mathrm{n}}$ are the masses of a Proton and neutron respectively, the binding energy of the isotope is (A) \(\left(\mathrm{M}_{0}-8 \mathrm{M}_{\mathrm{p}}\right) \mathrm{C}^{2}\) (B) $\left(\mathrm{M}_{0}-8 \mathrm{M}_{p}-9 \mathrm{M}_{\mathrm{n}}\right) \mathrm{C}^{2}$ (C) \(\left(\mathrm{M}_{0}-17 \mathrm{M}_{\mathrm{n}}\right) \mathrm{C}^{2}\) (D) \(\mathrm{M}_{\mathrm{O}} \mathrm{C}^{2}\)
The half time of a radioactive substance is \(20 \mathrm{~min}\), difference between Points of time when it is \(33 \%\) disintegrated and \(67 \%\) disintegrated is approximately (A) \(10 \mathrm{~min}\) (B) \(20 \mathrm{~min}\) (C) \(40 \mathrm{~min}\) (D) \(30 \mathrm{~min}\)
which of the following isotopes normally fissionable (A) \({ }_{92} \mathrm{U}^{233}\) (B) \({ }_{92} \mathrm{U}^{238}\) (C) \({ }_{92} \mathrm{U}^{235}\) (D) \({ }_{93} \mathrm{~Np}^{239}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.