If \(13.6 \mathrm{eV}\) energy is required to ionise the hydrogen atom the energy required to remove the electron form \(n=2\) state is (A) Zero (B) \(10.2 \mathrm{eV}\) (C) \(6.8 \mathrm{eV}\) (D) \(3.4 \mathrm{eV}\)

Short Answer

Expert verified
The energy required to remove the electron from the n=2 state is \(10.2 \mathrm{eV}\).

Step by step solution

01

Calculate energy of n=2 state for hydrogen atom

We use the energy level formula for hydrogen atom: \[E_n = -\dfrac{13.6 \, \text{eV}}{n^2}\] Now substituting n=2 \[E_2 = -\dfrac{13.6 \, \text{eV}}{(2)^2} = -\dfrac{13.6 \, \text{eV}}{4} = -3.4\, \text{eV}\]
02

Calculate energy difference between n=1 and n=2 states

Since, the energy required to ionize the hydrogen atom (remove electron from n=1 state) is 13.6 eV, the energy of the ground state (n=1) is: \[E_1 = -13.6\, \text{eV}\] Now to find the energy required to remove the electron from the n=2 state, we calculate the energy difference between n=1 and n=2 states: \[\Delta E = E_2 - E_1 = (-3.4\, \text{eV}) - (-13.6\, \text{eV}) = 10.2\, \text{eV}\] So, the energy required to remove the electron from the n=2 state is 10.2 eV. The correct answer is (B) \(10.2 \mathrm{eV}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A radiation of energy \(\mathrm{E}\) falls normally on a Perfect reflecting surface. The momentum transferred to the surface is. (A) \((\mathrm{E} / \mathrm{c})\) (B) \((2 \mathrm{E} / \mathrm{c})\) (C) \(\left(\mathrm{E} / \mathrm{c}^{2}\right)\) (D) Ec

Match column I and II and chose correct Answer form the given below. (a) Nuclear fusion (p) converts some matter into energy (b) Nuclear fission (q) generally Possible for nuclei with low atomic number (c) \(\beta\) decay (r) generally Possible for nuclei with high atomic number (d) Exothermic nuclear (s) Essentially Proceeds by weak reaction nuclear force(c) (A) $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{q}$ (B) $\mathrm{a} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{p}, \mathrm{d} \rightarrow \mathrm{s}$ (C) $\mathrm{a} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{p}$ (D) $\mathrm{a} \rightarrow \mathrm{r}, \mathrm{b} \rightarrow \mathrm{q}, \mathrm{c} \rightarrow \mathrm{p}, \mathrm{d} \rightarrow \mathrm{s}$

If \(\mathrm{M}_{0}\) is the mass of an isotope, ${ }^{17}{ }_{8} \mathrm{O}, \mathrm{M}_{\mathrm{p}}\( and \)\mathrm{M}_{\mathrm{n}}$ are the masses of a Proton and neutron respectively, the binding energy of the isotope is (A) \(\left(\mathrm{M}_{0}-8 \mathrm{M}_{\mathrm{p}}\right) \mathrm{C}^{2}\) (B) $\left(\mathrm{M}_{0}-8 \mathrm{M}_{p}-9 \mathrm{M}_{\mathrm{n}}\right) \mathrm{C}^{2}$ (C) \(\left(\mathrm{M}_{0}-17 \mathrm{M}_{\mathrm{n}}\right) \mathrm{C}^{2}\) (D) \(\mathrm{M}_{\mathrm{O}} \mathrm{C}^{2}\)

The half time of a radioactive substance is \(20 \mathrm{~min}\), difference between Points of time when it is \(33 \%\) disintegrated and \(67 \%\) disintegrated is approximately (A) \(10 \mathrm{~min}\) (B) \(20 \mathrm{~min}\) (C) \(40 \mathrm{~min}\) (D) \(30 \mathrm{~min}\)

which of the following isotopes normally fissionable (A) \({ }_{92} \mathrm{U}^{233}\) (B) \({ }_{92} \mathrm{U}^{238}\) (C) \({ }_{92} \mathrm{U}^{235}\) (D) \({ }_{93} \mathrm{~Np}^{239}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free