Chapter 18: Problem 2493
when \({ }_{3}^{7}\) Li nuclear are bombarded by Proton and the resultant nuclei are \({ }^{8}{ }_{4}\) Be, the emitted particle will be (A) neutron (B) gamma (C) alpha (D) Beta
Chapter 18: Problem 2493
when \({ }_{3}^{7}\) Li nuclear are bombarded by Proton and the resultant nuclei are \({ }^{8}{ }_{4}\) Be, the emitted particle will be (A) neutron (B) gamma (C) alpha (D) Beta
All the tools & learning materials you need for study success - in one app.
Get started for freeAn electron change its Position from orbit \(n=4\) to the orbit \(\mathrm{n}=2\) of an atom the wave length of emitted radiation in the form of \(\mathrm{R}\) (where \(\mathrm{R}\) is Redburg constants) (A) \((16 / 7 \mathrm{R})\) (B) \((16 / \mathrm{R})\) (C) (16 / 3R) (D) \((16 / 5 \mathrm{R})\)
The radio of minimum to maximum wave length in Balmer series is (A) \((1 / 4)\) (B) \((5 / 36)\) (C) \((3 / 4)\) (D) \((5 / 9)\)
which of the following isotopes normally fissionable (A) \({ }_{92} \mathrm{U}^{233}\) (B) \({ }_{92} \mathrm{U}^{238}\) (C) \({ }_{92} \mathrm{U}^{235}\) (D) \({ }_{93} \mathrm{~Np}^{239}\)
In terms of Rydberg constant \(R\). The wave number of first Balmer line is (A) \((5 \mathrm{R} / 36)\) (B) \((8 \mathrm{R} / 9)\) (C) \(\mathrm{R}\) (D) \((8 \mathrm{R} / 20)\)
Match column I and II column I \(\frac{\text { column I }}{\text { fnucleus }}\) (a) size of (b) number of Proton in a nucleus column II (p) Z (q) \(10^{-15} \mathrm{~m}\) (r) \((\mathrm{A}-\mathrm{Z})\) (s) \(10^{-10} \mathrm{~m}\) 0 (c) size of Atom (d) Number of neutrons in a nucleus (A) $\mathrm{a} \rightarrow \mathrm{r}, \mathrm{b} \rightarrow \mathrm{s}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{p}$ (B) $\mathrm{a} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{r}$ (C) $\mathrm{a} \rightarrow \mathrm{s}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{p}$ (D) $\mathrm{b} \rightarrow \mathrm{s}, \mathrm{c} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{r}$
What do you think about this solution?
We value your feedback to improve our textbook solutions.