Chapter 18: Problem 2502
In gamma ray emission form a nucleus (A) there is no change in the proton-number and neutron number (B) Both the number are changes (C) only Proton number change (D) only neutron number change
Chapter 18: Problem 2502
In gamma ray emission form a nucleus (A) there is no change in the proton-number and neutron number (B) Both the number are changes (C) only Proton number change (D) only neutron number change
All the tools & learning materials you need for study success - in one app.
Get started for freeThe total energy of the electron in the first excited state of hydrogen is \(-3.4 \mathrm{eV}\). what is the kinetic energy of the electron in this state? (A) \(6.8 \mathrm{eV}\) (B) \(3.4 \mathrm{eV}\) (C) \(-3.4 \mathrm{eV}\) \((\mathrm{D})-6.8 \mathrm{eV}\)
If \(\mathrm{M}_{0}\) is the mass of an isotope, ${ }^{17}{ }_{8} \mathrm{O}, \mathrm{M}_{\mathrm{p}}\( and \)\mathrm{M}_{\mathrm{n}}$ are the masses of a Proton and neutron respectively, the binding energy of the isotope is (A) \(\left(\mathrm{M}_{0}-8 \mathrm{M}_{\mathrm{p}}\right) \mathrm{C}^{2}\) (B) $\left(\mathrm{M}_{0}-8 \mathrm{M}_{p}-9 \mathrm{M}_{\mathrm{n}}\right) \mathrm{C}^{2}$ (C) \(\left(\mathrm{M}_{0}-17 \mathrm{M}_{\mathrm{n}}\right) \mathrm{C}^{2}\) (D) \(\mathrm{M}_{\mathrm{O}} \mathrm{C}^{2}\)
The masses of neutron and Proton are \(1.0087\) amu and \(1.0073\) amu respectively. It the neuron and Protons combins to form Helium nucleus of mass \(4.0015\) amu then binding energy of the helium nucleus will be (A) \(14.2 \mathrm{MeV}\) (B) \(28.4 \mathrm{MeV}\) (C) \(27.3 \mathrm{MeV}\) (D) \(20.8 \mathrm{MeV}\)
The binding energy Per nucleon of deuteron $\left({ }^{2}{ }_{1} \mathrm{H}\right)\( and Lielium nucleus \){ }_{2}{ }^{4}{ }_{2} \mathrm{He}$ ) is \(1.1 \mathrm{MeV}\) and \(7.0 \mathrm{MeV}\). respectively. If two deuteron react to form a single helium nucleus, the energy released is (A) \(23.6 \mathrm{MeV}\) (B) \(26.9 \mathrm{MeV}\) (C) \(13.9 \mathrm{MeV}\) (D) \(19.2 \mathrm{MeV}\)
The energy released by the fission of one uranium atom is \(200 \mathrm{MeV}\). The number of fission Per second required to Produce \(3.2 \mathrm{w}\) of Power is (A) \(10^{10}\) (B) \(10^{7}\) (C) \(10^{12}\) (D) \(10^{11}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.