Chapter 18: Problem 2519
The innermost orbit of the hydrogen atom has a radius \(0.53 \mathrm{~A}\). what is radius of \(2^{\text {nd }}\) orbit is ? (A) \(2.12 \AA\) (B) \(1.06 \AA\) (C) \(21.2 \AA\) (D) \(10.6 \AA\)
Chapter 18: Problem 2519
The innermost orbit of the hydrogen atom has a radius \(0.53 \mathrm{~A}\). what is radius of \(2^{\text {nd }}\) orbit is ? (A) \(2.12 \AA\) (B) \(1.06 \AA\) (C) \(21.2 \AA\) (D) \(10.6 \AA\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Bohr model the hydrogen atom, the lowest orbit corresponds to (A) Infinite energy (B) zero energy (C) The minimum energy (D) The maximum energy
which of these is a fusion reaction (A) ${ }^{3}{ }_{1} \mathrm{H}+{ }_{1}^{2} \mathrm{H}={ }_{2}^{4} \mathrm{He}+{ }_{0} \mathrm{n}^{1}$ (B) ${ }^{12}{ }_{7} \mathrm{C} \rightarrow{ }_{6} \mathrm{C}^{12}+\beta^{+}+\mathrm{g}$ (C) ${ }_{92} \mathrm{U}^{238} \rightarrow{ }^{206}{ }_{82} \mathrm{~Pb}+8\left({ }_{2}^{4} \mathrm{He}\right)+6\left(_{1-} \mathrm{e}\right)$ (D) None of these
The energy difference between the first two levels of hydrogen atom is $10.2 \mathrm{eV}$. what is the corresponding energy difference for a singly ionized helium atom? (A) \(10.2 \mathrm{eV}\) (B) \(81.6 \mathrm{eV}\) (C) \(20.4 \mathrm{eV}\) (D) \(40.8 \mathrm{eV}\)
two deuterons each of mass \(\mathrm{m}\) fuse to form helium resulting in release of energy \(\mathrm{E}\) the mass of helium formed is (A) \(\mathrm{m}+\left(\mathrm{E} / \mathrm{C}^{2}\right)\) (B) \(\left[\mathrm{E} /\left(\mathrm{mC}^{2}\right)\right]\) (C) \(2 \mathrm{~m}-\left(\mathrm{E} / \mathrm{C}^{2}\right)\) (D) \(2 \mathrm{~m}+\left(\mathrm{E} / \mathrm{C}^{2}\right)\)
Nucleon is common name for (A) electron and neutron (B) proton and neutron (C) neutron and positron (D) neutron and neutrino
What do you think about this solution?
We value your feedback to improve our textbook solutions.