Complete the reaction ${ }_{0} \mathrm{n}^{1}+{ }_{92} \mathrm{U}^{235} \rightarrow{ }_{56} \mathrm{Ba}^{144}+{ }_{\mathrm{Z}} \mathrm{X}^{\mathrm{A}}+3\left({ }_{0} \mathrm{n}^{1}\right)$ (A) \(_{36} \mathrm{Kr}^{90}\) (B) \(_{36} \mathrm{Kr}^{89}\) (C) \(_{36} \mathrm{Kr}^{91}\) (D) \(_{36} \mathrm{Kr}^{92}\)

Short Answer

Expert verified
The correct product of the nuclear reaction is (B) \(_{36} \mathrm{Kr}^{89}\).

Step by step solution

01

Identify the initial masses and atomic numbers

: For the given reaction, we have an initial mass and atomic number for each particle involved: \(\mathrm{n}^{1}({ }_{0})+\mathrm{U}^{235}({ }_{92}) \rightarrow \mathrm{Ba}^{144}({ }_{56})+\mathrm{X}^{\mathrm{A}}({ }_{\mathrm{Z}})+3\left(\mathrm{n}^{1}({ }_{0})\right)\) Mass numbers are represented by the superscripts (A), and atomic numbers are represented by the subscripts (Z).
02

Determine the conservation laws

: According to the conservation of mass number (A), the sum of the initial mass numbers must equal the sum of the final mass numbers: A_initial = A_final For atomic numbers: Z_initial = Z_final
03

Apply mass number conservation

: Using the mass number conservation, we have: A_initial = 1 (neutron) + 235 (Uranium) = A_final A_final = 144 (Barium) + A (product) + 3 (neutrons) Combining terms, we get: A = (1 + 235) - (144 + 3) = 236 - 147 = 89
04

Apply atomic number conservation

: Using the atomic number conservation, we have: Z_initial = 0 (neutron) + 92 (Uranium) = Z_final Z_final = 56 (Barium) + Z (product) + 0 (neutrons) Combining terms, we get: Z = (0 + 92) - (56 + 0) = 92 - 56 = 36
05

Identify the correct product

: Now that we found the mass number A = 89 for the product, and atomic number Z = 36, we can identify the correct product: (B) \(_{36} \mathrm{Kr}^{89}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If the binding energy of electron in a hydrogen atom is \(3.6 \mathrm{eV}\), the energy required to remove the electron from the second excited state of \(\mathrm{Li}^{\mathrm{H}+}\) is A) \(13.6 \mathrm{eV}\) (B) \(3.4 \mathrm{eV}\) C) \(30.6 \mathrm{eV}\) (D) \(122.4 \mathrm{eV}\)

when \({ }_{3}^{7}\) Li nuclear are bombarded by Proton and the resultant nuclei are \({ }^{8}{ }_{4}\) Be, the emitted particle will be (A) neutron (B) gamma (C) alpha (D) Beta

(i) statement-I :- Large angle scattering of alpha Particle led to discovery of atomic nucleus. statement-II :- Entire Positive charge of atom is concentrated in the central core. (A) statement -I and II are true. and statement II is correct explanation of statement-I (B) statement -I and II are true, but statement-II is not correct explanation of statement I (C) statement I is true, but statement II is false. (D) statement I is false but statement II is true (ii) statement-I \(1 \mathrm{amu}=931.48 \mathrm{MeV}\) statement-II It follows form \(E=m c^{2}\) (iii) statement -I:- half life time of tritium is \(12.5\) years statement-II:- The fraction of tritium that remains after 50 years is \(6.25 \%\) (iv) statement-I:- Nuclei of different atoms have same size statement-II:- \(\mathrm{R}=\operatorname{Ro}(\mathrm{A})^{1 / 3}\)

The transition the state \(\mathrm{n}=4\) to \(\mathrm{n}=1\) in a hydrogen like atom results in ultraviolet radiation. Infrared radiation will be obtained in the transition form (A) \(3 \rightarrow 2\) (B) \(5 \rightarrow 4\) (C) \(4 \rightarrow 2\) (D) \(2 \rightarrow 1\)

In each of the following question match column -I and column -II. Select correct Answer. (a) Bohr atom model (p) fixed for the atom (b) Ionization potential (q) Nucleus (c) Rutherford atom model (r) stationary orbits (d) Thomson atom model (s) In atom positive and Negative charge are distributed uniformly (A) $\mathrm{a} \rightarrow \mathrm{s}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{p}$ (B) $\mathrm{a} \rightarrow \mathrm{r}, \mathrm{b} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{s}$ (C) $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{q}$ (D) $\mathrm{b} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{d} \rightarrow \mathrm{s}$

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free