Chapter 18: Problem 2538
In which region of electromagnetic spectrum does the Lyman series of hydrogen atom like (A) \(x\) -ray (B) Infrared (C) visible (D) ultraviolet
Chapter 18: Problem 2538
In which region of electromagnetic spectrum does the Lyman series of hydrogen atom like (A) \(x\) -ray (B) Infrared (C) visible (D) ultraviolet
All the tools & learning materials you need for study success - in one app.
Get started for freeIn each of the following question match column -I and column -II. Select correct Answer. (a) Bohr atom model (p) fixed for the atom (b) Ionization potential (q) Nucleus (c) Rutherford atom model (r) stationary orbits (d) Thomson atom model (s) In atom positive and Negative charge are distributed uniformly (A) $\mathrm{a} \rightarrow \mathrm{s}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{p}$ (B) $\mathrm{a} \rightarrow \mathrm{r}, \mathrm{b} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{s}$ (C) $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{q}$ (D) $\mathrm{b} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{d} \rightarrow \mathrm{s}$
The activity of a radioactive sample is measured as \(\mathrm{N}_{0}\) counts per minute at \(\mathrm{t}=0\) and \(\left(\mathrm{N}_{0} / \mathrm{e}\right)\) counts Per minute at \(\mathrm{t}=5 \mathrm{~min} .\) The time (in min) at which activity reduces to half its value is (A) log e \((2 / 5)\) (B) \(5 \log _{10} 2\) (C) \(5 \log _{\mathrm{e}} 2\) (D) \(\log _{10}^{(2 / 5)}\)
If the binding energy of electron in a hydrogen atom is \(13.6 \mathrm{eV}\), the energy required to remove the electron form the first state of \(\mathrm{Li}^{2+}\) is. (A) \(13.6 \mathrm{eV}\) (B) \(30.6 \mathrm{eV}\) (C) \(122.4 \mathrm{eV}\) (D) \(3.4 \mathrm{eV}\)
The wave length of the first line of Lyman series for hydrogen atom is equal to that of hydrogen atom is equal to that of second line of Balmar series for a hydrogen like ion. The atomic number \(\mathrm{Z}\) of hydrogen like ion is (A) 1 (B) 2 (C) 3 (D) 4
It the radius of \({ }^{27}{ }_{13} \mathrm{~A} \ell\) nucleus is $3.6 \mathrm{fm}\( the radius of \){ }^{125}{ }_{52} \mathrm{Te}$ nucleus is nearly equal to (A) \(8 \mathrm{fm}\) (B) \(6 \mathrm{fm}\) (C) \(4 \mathrm{fm}\) (D) \(5 \mathrm{fm}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.