Chapter 18: Problem 2544
Large angle scattering of \(\alpha-\) particle could not be explained by (A) Thomson model (B) Rutherford model (C) Both Thomson and Rutherford model (D) neither Thomson nor Rutherford model
Chapter 18: Problem 2544
Large angle scattering of \(\alpha-\) particle could not be explained by (A) Thomson model (B) Rutherford model (C) Both Thomson and Rutherford model (D) neither Thomson nor Rutherford model
All the tools & learning materials you need for study success - in one app.
Get started for freeThe ratio of atomic volume of nuclear volume is of the order of (A) \(10^{-15}\) (B) \(10^{-10}\) (C) \(10^{15}\) (D) \(10^{-10}\)
Match column I and II column I \(\frac{\text { column I }}{\text { fnucleus }}\) (a) size of (b) number of Proton in a nucleus column II (p) Z (q) \(10^{-15} \mathrm{~m}\) (r) \((\mathrm{A}-\mathrm{Z})\) (s) \(10^{-10} \mathrm{~m}\) 0 (c) size of Atom (d) Number of neutrons in a nucleus (A) $\mathrm{a} \rightarrow \mathrm{r}, \mathrm{b} \rightarrow \mathrm{s}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{p}$ (B) $\mathrm{a} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{r}$ (C) $\mathrm{a} \rightarrow \mathrm{s}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{p}$ (D) $\mathrm{b} \rightarrow \mathrm{s}, \mathrm{c} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{r}$
It the radius of \({ }^{27}{ }_{13} \mathrm{~A} \ell\) nucleus is $3.6 \mathrm{fm}\( the radius of \){ }^{125}{ }_{52} \mathrm{Te}$ nucleus is nearly equal to (A) \(8 \mathrm{fm}\) (B) \(6 \mathrm{fm}\) (C) \(4 \mathrm{fm}\) (D) \(5 \mathrm{fm}\)
Energy levels \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) of a certain atom
corresponding values of energy i.e. \(E_{A}
The binding energy Per nucleon of deuteron $\left({ }^{2}{ }_{1} \mathrm{H}\right)\( and Lielium nucleus \){ }_{2}{ }^{4}{ }_{2} \mathrm{He}$ ) is \(1.1 \mathrm{MeV}\) and \(7.0 \mathrm{MeV}\). respectively. If two deuteron react to form a single helium nucleus, the energy released is (A) \(23.6 \mathrm{MeV}\) (B) \(26.9 \mathrm{MeV}\) (C) \(13.9 \mathrm{MeV}\) (D) \(19.2 \mathrm{MeV}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.